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V. Martink,22 M. Mart́ınez,4 R. Mart́ınez-Ballaŕın,32 P. Mastrandrea,52 M. Mathis,26 M.E. Mattson,59 P. Mazzanti,6

K.S. McFarland,50 P. McIntyre,54 R. McNultyj ,30 A. Mehta,30 P. Mehtala,24 A. Menzione,47 C. Mesropian,51

T. Miao,18 D. Mietlicki,35 N. Miladinovic,7 R. Miller,36 C. Mills,23 M. Milnik,27 A. Mitra,1 G. Mitselmakher,19

H. Miyake,56 S. Moed,23 N. Moggi,6 M.N. Mondragonn,18 C.S. Moon,28 R. Moore,18 M.J. Morello,47 J. Morlock,27
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We report the observation of electroweak single top quark production in 3.2 fb−1 of pp̄ colli-
sion data collected by the Collider Detector at Fermilab at

√
s = 1.96 TeV. Candidate events in

the W+jets topology with a leptonically decaying W boson are classified as signal-like by four
parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted de-
cision trees. These results are combined using a super discriminant analysis based on genetically
evolved neural networks in order to improve the sensitivity. This combined result is further com-
bined with that of a search for a single top quark signal in an orthogonal sample of events with
missing transverse energy plus jets and no charged lepton. We observe a signal consistent with
the standard model prediction but inconsistent with the background-only model by 5.0 standard
deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We mea-
sure a production cross section of 2.3+0.6

−0.5(stat + sys) pb, extract the CKM matrix element value

|Vtb| = 0.91+0.11
−0.11(stat + sys) ± 0.07(theory), and set a lower limit |Vtb| > 0.71 at the 95% confidence

level, assuming mt = 175 GeV/c2.

PACS numbers: 14.65.Ha, 13.85.Qk, 12.15.Hh, 12.15.Ji
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I. INTRODUCTION

The top quark is the most massive known elementary
particle. Its mass, mt, is 173.1± 1.3 GeV/c2 [1], about
forty times larger than that of the bottom quark, the
second-most massive standard model (SM) fermion. The
top quark’s large mass, at the scale of electroweak sym-
metry breaking, hints that it may play a role in the mech-
anism of mass generation. The presence of the top quark
was established in 1995 by the CDF and D0 collabora-
tions with approximately 60 pb−1 of pp̄ data collected
per collaboration at

√
s = 1.8 TeV [2, 3] at the Fermilab

Tevatron. The production mechanism used in the obser-
vation of the top quark was tt̄ pair production via the
strong interaction.

Since then, larger data samples have enabled detailed
study of the top quark. The tt̄ production cross sec-
tion [4], the top quark’s mass [1], the top quark decay
branching fraction to Wb [5], and the polarization of W
bosons in top quark decay [6] have been measured pre-
cisely. Nonetheless, many properties of the top quark
have not yet been tested as precisely. In particular, the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vtb

remains poorly constrained by direct measurements [7].
The strength of the coupling, |Vtb|, governs the decay
rate of the top quark and its decay width into Wb; other
decays are expected to have much smaller branching frac-
tions. Using measurements of the other CKM matrix el-
ements, and assuming a three-generation SM with a 3×3
unitary CKM matrix, |Vtb| is expected to be very close
to unity.

Top quarks are also expected to be produced singly
in pp̄ collisions via weak, charged-current interactions.
The dominant processes at the Tevatron are the s-
channel process, shown in Fig. 1(a), and the t-channel
process [8], shown in Fig. 1(b). The next-to-leading-
order (NLO) cross sections for these two processes are
σs= 0.88 ± 0.11 pb and σt= 1.98 ± 0.25 pb, respec-
tively [9, 10]. This cross section is the sum of the sin-
gle t and the single t̄ predictions. Throughout this pa-
per, charge conjugate states are implied; all cross sec-
tions and yields are shown summed over charge conju-
gate states. A calculation has been performed resum-
ming soft gluon corrections and calculating finite-order
expansions through next-to-next-to-next-to-leading or-
der (NNNLO) [11], yielding σs= 0.98 ± 0.04 pb and
σt= 2.16 ± 0.12 pb, also assuming mt = 175 GeV/c2.
Newer calculations are also available [12, 13, 14]. A third
process, the associated production of a W boson and a
top quark, shown in Fig. 1(c), has a very small expected
cross section at the Tevatron.

Measuring the two cross sections σs and σt provides a
direct determination of |Vtb|, allowing an overconstrained
test of the unitarity of the CKM matrix, as well as an
indirect determination of the top quark’s lifetime. We as-
sume that the top quark decays to Wb 100% of the time
in order to measure the production cross sections. This
assumption does not constrain |Vtb| to be near unity, but

u

d

W+

b

t

(a)

b

u d

t

W+

(b)

g

b

b
W_

t

(c)

FIG. 1: Representative Feynman diagrams of single top quark
production. Figures (a) and (b) are s- and t-channel pro-
cesses, respectively, while figure (c) is associated Wt produc-
tion, which contributes a small amount to the expected cross
section at the Tevatron.

instead it is the same as assuming |Vtb|2 � |Vts|2 + |Vtd|2.
Many extensions to the SM predict measurable devia-
tions of σs or σt from their SM values. One of the sim-
plest of these is the hypothesis that a fourth generation of
fermions exists beyond the three established ones. Aside
from the constraint that its neutrino must be heavier
than MZ/2 [15] and that the quarks must escape current
experimental limits, the existence of a fourth generation
of fermions remains possible. If these additional sequen-
tial fermions exist, then a 4×4 version of the CKM matrix
would be unitary, and the 3× 3 submatrix may not nec-
essarily be unitary. The presence of a fourth generation
would in general reduce |Vtb|, thereby reducing single top
quark production cross sections σs and σt. Precision elec-
troweak constraints provide some information on possible
values of |Vtb| in this extended scenario [16], but a direct
measurement provides a test with no additional model
dependence.

Other new physics scenarios predict larger values of σs

and σt than those expected in the SM. A flavor-changing
Ztc coupling, for example, would manifest itself in the
production of pp̄ → tc̄ events, which may show up in
either the measured value of σs or σt depending on the
relative acceptances of the measurement channels. An
additional charged gauge boson W ′ may also enhance
the production cross sections. A review of new physics
models affecting the single top quark production cross
section and polarization properties is given in [17].

Even in the absence of new physics, assuming the SM
constraints on |Vtb|, a measurement of the t-channel sin-
gle top production cross section provides a test of the b
parton distribution function of the proton.

Single top quark production is one of the background
processes in the search for the Higgs boson H in the
WH → `νbb̄ channel, since they share the same final
state, and a direct measurement of single top quark pro-
duction may improve the sensitivity of the Higgs bo-
son search. Furthermore, the backgrounds to the sin-
gle top quark search are backgrounds to the Higgs bo-
son search. Careful understanding of these backgrounds
lays the groundwork for future Higgs boson searches.
Since the single top quark processes have larger cross
sections than the Higgs boson signal in the WH → `νbb̄
mode [18], and since the single top signal is more distinct
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from the backgrounds than the Higgs boson signal is, we
must pass the milestone of observing single top quark
production along the way to testing for Higgs boson pro-
duction.

Measuring the single top quark cross section is well mo-
tivated but it is also extremely challenging at the Teva-
tron. The total production cross section is expected to
be about one-half of that of tt̄ production [19], and with
only one top quark in the final state instead of two, the
signal is far less distinct from the dominant background
processes than tt̄ production is. The rate at which a W
boson is produced along with jets, at least one of which
must have a displaced vertex which passes our require-
ments for B hadron identification (we say in this pa-
per that such jets are b-tagged), is approximately twelve
times the signal rate. The a priori uncertainties on the
background processes are about a factor of three larger
than the expected signal rate. In order to expect to ob-
serve single top quark production, the background rates
must be small and well constrained, and the expected
signal must be much larger than the uncertainty on the
background. A much more pure sample of signal events
therefore must be separated from the background pro-
cesses in order to make observation possible.

Single top quark production is characterized by a num-
ber of kinematic features. The top quark mass is known,
and precise predictions of the distributions of observ-
able quantities for the top quark and the recoil products
are also available. Top quarks produced singly via the
weak interaction are expected to be nearly 100% polar-
ized [20, 21]. The background W+jets and tt̄ processes
have characteristics which differ from those of single top
quark production. Kinematic properties, coupled with
the b-tagging requirement, provide the keys to purifica-
tion of the signal. Because signal events differ from back-
ground events in several ways, such as in the distribution
of the invariant mass of the final state objects assigned
to be the decay products of the top quark and the rapid-
ity of the recoiling jets, and because the task of observ-
ing single top quark production requires the maximum
separation, we apply multivariate techniques. The tech-
niques described in this paper together achieve a signal-
to-background ratio of more than 5:1 in a subset of events
with a significant signal expectation. This high purity is
needed in order to overcome the uncertainty in the back-
ground prediction.

The effect of the background uncertainty is reduced
by fitting for both the signal and the background rates
together to the observed data distributions, a technique
which is analogous to fitting the background in the side-
bands of a mass peak, but which is applied in this case
to multivariate discriminant distributions. Uncertainties
are incurred in this procedure – the shapes of the back-
ground distributions are imperfectly known from simu-
lations. We check in detail the modeling of the distri-
butions of the inputs and the outputs of the multivari-
ate techniques, using events passing our selection require-
ments, and also separately using events in control sam-

ples depleted in signal. We also check the modeling of the
correlations between pairs of these variables. In general
we find excellent agreement, with some imperfections.
We assess uncertainties on the shapes of the discrimi-
nant outputs both from a priori uncertain parameters in
the modeling, as well as from discrepancies observed in
the modeling of the data by the Monte Carlo simulations.
These shape uncertainties are included in the signal rate
extraction and in the calculation of the significance.

The D0 Collaboration reported evidence for the pro-
duction of single top quarks in 0.9 fb−1 of data [22, 23],
and observation of the process in 2.3 fb−1 [24]. More
recently, D0 has conducted a measurement of the sin-
gle top production cross section in the τ+jets final state
using 4.8 fb−1 of data [25]. The CDF Collaboration re-
ported evidence in 2.2 fb−1 of data [26] and observation
in 3.2 fb−1 of data [27]. This paper describes in detail
the four W+jets analyses of [27]; the analyses are based
on multivariate likelihood functions (LF), artificial neu-
ral networks (NN), matrix elements (ME), and boosted
decision trees (BDT). These analyses select events with a
high-pT charged lepton, large missing transverse energy
/ET, and two or more jets, at least one of which is b-
tagged. Each analysis separately measures the single top
quark production cross section and calculates the signifi-
cance of the observed excess. We report here a single set
of results and therefore must combine the information
from each of the four analyses. Because there is 100%
overlap in the data and Monte Carlo events selected by
the analyses, a natural combination technique is to use
the individual analyses’ discriminant outputs as inputs to
a super discriminant function evaluated for each event.
The distributions of this super discriminant are then in-
terpreted in the same way as those of each of the four
component analyses.

A separate analysis is conducted on events without an
identified charged lepton, in a data sample which corre-
sponds to 2.1 fb−1 of data. Missing transverse energy
plus jets, one of which is b-tagged, is the signature used
for this fifth analysis (MJ), which is described in detail
in [28]. There is no overlap of events selected by the
MJ analysis and the W+jets analyses. The results of
this analysis are combined with the results of the su-
per discriminant analysis to yield the final results: the
measured total cross section σs + σt, |Vtb|, the separate
cross sections σs and σt, and the statistical significance
of the excess. With the combination of all analyses, we
observe single top quark production with a significance
of 5.0 standard deviations.

The analyses described in this paper were blind to
the selected data when they were optimized for their ex-
pected sensitivities. Furthermore, since the publication
of the 2.2 fb−1 W+jets results [26], the event selection
requirements, the multivariate discriminants for the anal-
yses shared with that result, and the systematic uncer-
tainties remain unchanged; new data were added without
further optimization or retraining. When the 2.2 fb−1

results were validated, they were done so in a blind fash-
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ion. The distributions of all relevant variables were first
checked for accurate modeling by our simulations and
data-based background estimations in control samples of
data that do not overlap with the selected signal sample.
Then the distributions of the discriminant input vari-
ables, and also other variables, were checked in the sam-
ple of events passing the selection requirements. After
that, the modeling of the low signal-to-background por-
tions of the final output histograms was checked. Only
after all of these validation steps were completed were
the data in the most sensitive regions revealed. Two new
analyses, BDT and MJ, have been added for this paper,
and they were validated in a similar way.

This paper is organized as follows: Section II describes
the CDF II detector, Section III describes the event selec-
tion, Section IV describes the simulation of signal events
and the acceptance of the signal, Section V describes
the background rate and kinematic shape modeling, Sec-
tion VI describes a neural-network flavor separator which
helps separate b jets from others, Section VII describes
the four W+jets multivariate analysis techniques, Sec-
tion VIII describes the systematic uncertainties we as-
sess, Section IX describes the statistical techniques for
extraction of the signal cross section and the significance,
Section X describes the super discriminant, Section XI
presents our results for the cross section, |Vtb|, and the
significance, Section XII describes an extraction of σs and
σt in a joint fit, and Section XIII summarizes our results.

II. THE CDF II DETECTOR

The CDF II detector [29, 30, 31] is a general-purpose
particle detector with azimuthal and forward-backward
symmetry. Positions and angles are expressed in a cylin-
drical coordinate system, with the z axis directed along
the proton beam. The azimuthal angle φ around the
beam axis is defined with respect to a horizontal ray run-
ning outwards from the center of the Tevatron, and radii
are measured with respect to the beam axis. The po-
lar angle θ is defined with respect to the proton beam
direction, and the pseudorapidity η is defined to be
η = − ln [tan(θ/2)]. The transverse energy (as measured
by the calorimetry) and momentum (as measured by the
tracking systems) of a particle are defined as ET = E sin θ
and pT = p sin θ, respectively. Figure 2 shows a cutaway
isometric view of the CDF II detector.

A silicon tracking system and an open-cell drift cham-
ber are used to measure the momenta of charged par-
ticles. The CDF II silicon tracking system consists of
three subdetectors: a layer of single-sided silicon mi-
crostrip detectors, located immediately outside the beam
pipe (layer 00) [32], a five-layer, double-sided silicon mi-
crostrip detector (SVX II) covering the region between
2.5 to 11 cm from the beam axis [33], and intermediate
silicon layers (ISL) [34] located at radii between 19 cm
and 29 cm which provide linking between track segments
in the drift chamber and the SVX II. The entire system

reconstructs tracks in three dimensions with the preci-
sion needed identify displaced vertices associated with b
and c hadron decays.

The central outer tracker (COT) [35], the main track-
ing detector of CDF II, is an open-cell drift chamber,
3.1 m in length. It is segmented into eight concentric
superlayers. The drift medium is a mixture of argon and
ethane. Sense wires are arranged in eight alternating ax-
ial and ± 2 ◦ stereo superlayers with twelve layers of wires
in each. The active volume covers the radial range from
40 cm to 137 cm. The tracking efficiency of the COT is
nearly 100% in the range |η| ≤ 1, and with the addition
of silicon coverage, the tracks can be detected within the
range |η| < 1.8.

The tracking systems are located within a supercon-
ducting solenoid, which has a diameter of 3.0 m, and
which generates a 1.4 T magnetic field parallel to the
beam axis. The magnetic field is used to measure the
charged particle momentum transverse to the beamline.

Front electromagnetic lead-scintillator sampling
calorimeters [36, 37] and rear hadronic iron-scintillator
sampling calorimeters [38] surround the solenoid and
measure the energy flow of interacting particles. They
are segmented into projective towers, each one covering
a small range in pseudorapidity and azimuth. The
full array has an angular coverage of |η| < 3.6. The
central region |η| < 1.1 is covered by the central
electromagnetic calorimeter (CEM) and the central
and end-wall hadronic calorimeters (CHA and WHA).
The forward region 1.1 < |η| < 3.6 is covered by the
end-plug electromagnetic calorimeter (PEM) and the
end-plug hadronic calorimeter (PHA). Energy deposits
in the electromagnetic calorimeters are used for elec-
tron identification and energy measurement, and jets
are identified and measured through the energy they
deposit in the electromagnetic and hadronic calorimeter
towers. The CEM and PEM calorimeters have two
dimensional readout strip detectors located at shower
maximum [36, 39]. These detectors provide higher
resolution position measurements of electromagnetic
showers than are available from the calorimeter tower
segmentation alone, and also provide local energy mea-
surements. The shower maximum detectors contribute
to the identification of electrons and photons, and help
separate them from π0 decays.

Beyond the calorimeters resides the muon system,
which provides muon detection in the range |η| < 1.5.
For the analyses presented in this article, muons are
detected in four separate subdetectors. Muons with
pT > 1.4 GeV/c penetrating the five absorption lengths
of the calorimeter are detected in the four layers of pla-
nar multi-wire drift chambers of the central muon detec-
tor (CMU) [40]. Behind an additional 60 cm of steel,
a second set of four layers of drift chambers, the cen-
tral muon upgrade (CMP) [29, 41], detects muons with
pT > 2.2 GeV/c. The CMU and CMP cover the same
part of the central region |η| < 0.6. The central muon
extension (CMX) [29, 41] extends the pseudorapidity cov-
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FIG. 2: Cutaway isometric view of the CDF II detector.

erage of the muon system from 0.6 to 1.0 and thus com-
pletes the coverage over the full fiducial region of the
COT. Muons with 1.0 < |η| < 1.5 are detected by the
barrel muon chambers (BMU) [42].

The Tevatron collider luminosity is determined with
multi-cell gas Cherenkov detectors [43] located in the re-
gion 3.7 < |η| < 4.7 which measure the average number
of inelastic pp̄ collisions per bunch crossing. The total
uncertainty on the luminosity is ±6.0%, of which 4.4%
comes from the acceptance and the operation of the lu-
minosity monitor and 4.0% comes from the uncertainty
of the inelastic pp̄ cross section [44].

III. SELECTION OF CANDIDATE EVENTS

Single top quark events (see Fig. 3) have jets, a charged
lepton, and a neutrino in the final state. The top quark
decays into a W boson and a b quark before hadronizing.
The quarks recoiling from the top quark, and the b quark
from top quark decay, hadronize to form jets, motivating
our event selection which requires two or three energetic
jets (the third can come from a radiated gluon), at least
one of which is b-tagged, and the decay products of a
W boson. In order to reduce background from multi-
jet production via the strong interaction, we focus our
event selection on the decays of the W boson to eνe or
µνµ in these analyses. Such events have one charged
lepton (an electron or a muon), missing transverse energy
resulting from the undetected neutrino, and at least two
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νl
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u d
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FIG. 3: Feynman diagrams showing the final states of the
dominant s-channel (a) and t-channel (b) processes, with lep-
tonic W boson decays. Both final states contain a charged
lepton, a neutrino, and two jets, at least one of which origi-
nates from a b quark.

jets. These events constitute the W+jets sample. We
also include the acceptance for signal and background
events in which W → τντ , and the MJ analysis also is
sensitive to W boson decays to τ leptons.

Since the pp̄ collision rate at the Tevatron exceeds the
rate at which events can be written to tape by five orders
of magnitude, CDF has an elaborate trigger system with
three levels. The first level uses special-purpose hard-
ware [45] to reduce the event rate from the effective beam-
crossing frequency of 1.7 MHz to approximately 15 kHz,
the maximum rate at which the detector can be read out.
The second level consists of a mixture of dedicated hard-
ware and fast software algorithms and takes advantage
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of the full information read out of the detector [46]. At
this level the trigger rate is reduced further to less than
800 Hz. At the third level, a computer farm running fast
versions of the offline event reconstruction algorithms re-
fines the trigger selections based on quantities that are
nearly the same as those used in offline analyses [47]. In
particular, detector calibrations are applied before the
trigger requirements are imposed. The third level trigger
selects events for permanent storage at a rate of up to
200 Hz.

Many different trigger criteria are evaluated at each
level, and events passing specific criteria at one level are
considered by a subset of trigger algorithms at the next
level. A cascading set of trigger requirements is known
as a trigger path. This analysis uses the trigger paths
which select events with high-pT electron or muon can-
didates. The acceptance of these triggers for tau lep-
tons is included in our rate estimates but the triggers are
not optimized for identifying tau leptons. An additional
trigger path, which requires significant /ET plus at least
two high-pT jets, is also used to add W+jets candidate
events with non-triggered leptons, which include charged
leptons outside the fiducial volumes of the electron and
muon detectors, as well as tau leptons.

The third-level central electron trigger requires a COT
track with pT> 9 GeV/c matched to an energy cluster in
the CEM with ET> 18 GeV. The shower profile of this
cluster as measured by the shower-maximum detector is
required to be consistent with those measured using test-
beam electrons. Electron candidates with |η| > 1.1 are
required to deposit more than 20 GeV in a cluster in the
PEM, and the ratio of hadronic energy to electromagnetic
energy EPHA/EPEM for this cluster is required to be less
than 0.075. The third-level muon trigger requires a COT
track with pT>18 GeV/c matched to a track segment in
the muon chambers. The /ET+jets trigger path requires
/ET > 35 GeV and two jets with ET> 10 GeV.

After offline reconstruction, we impose further require-
ments on the electron candidates in order to improve
the purity of the sample. A reconstructed track with
pT> 9 GeV/c must match to a cluster in the CEM with
ET> 20 GeV. Furthermore, we require EHAD/EEM <
0.055 + 0.00045× E/GeV and the ratio of the energy of
the cluster to the momentum of the track E/p has to be
smaller than 2.0 c for track momenta ≤ 50 GeV/c. For
electron candidates with tracks with p > 50 GeV/c, no
requirement on E/p is made as the misidentification rate
is small. Candidate objects which fail these requirements
are more likely to be hadrons or jets than those that pass.

Electron candidates in the forward direction (PHX) are
defined by a cluster in the PEM with ET > 20 GeV and
EHAD/EEM < 0.05. The cluster position and the primary
vertex position are combined to form a search trajectory
in the silicon tracker and seed the pattern recognition of
the tracking algorithm.

Electron candidates in the CEM and PHX are rejected
if an additional high-pT track is found which forms a
common vertex with the track of the electron candidate

and has the opposite sign of the curvature. These events
are likely to stem from the conversion of a photon. Fig-
ure 4(a) shows the (η, φ) distributions of CEM and PHX
electron candidates.

Muon candidates are identified by requiring the pres-
ence of a COT track with pT> 20 GeV/c that extrap-
olates to a track segment in one or more muon cham-
bers. The muon trigger may be satisfied by two types
of muon candidates, called CMUP and CMX. A CMUP
muon candidate is one in which track segments matched
to the COT track are found in both the CMU and the
CMP chambers. A CMX muon is one in which the track
segment is found in the CMX muon detector. In order
to minimize background contamination, further require-
ments are imposed. The energy deposition in the electro-
magnetic and hadronic calorimeters has to correspond to
that expected from a minimum-ionizing particle. To re-
ject cosmic-ray muons and muons from in-flight decays of
long-lived particles such as K0

S, K0
L, and Λ particles, the

distance of closest approach of the track to the beam line
in the transverse plane is required to be less than 0.2 cm
if there are no silicon hits on the muon candidate’s track,
and less than 0.02 cm if there are silicon hits. The re-
maining cosmic rays are reduced to a negligible level by
taking advantage of their characteristic track timing and
topology.

In order to add acceptance for events containing muons
that cannot be triggered on directly, several additional
muon types are taken from the extended muon cover-
age (EMC) of the /ET+jets trigger path: a track seg-
ment only in the CMU and a COT track not pointing to
CMP(CMU), a track segment only in the CMP and COT
track not pointing to CMU (CMP), a track segment in
the BMU (BMU), an isolated track not fiducial to any
muon chambers (CMIO), an isolated track matched to a
muon segment that is not considered fiducial to a muon
detector (SCMIO), and a track segment only in the CMX
but in a region that can not be used in the trigger due to
tracking limitations of the trigger (CMXNT). Figure 4(b)
shows the (η, φ) distributions of muon candidates in each
of these categories.

We require exactly one isolated charged lepton candi-
date with |η| < 1.6. A candidate is considered isolated
if the ET not assigned to the lepton inside a cone de-
fined by R ≡

√

(∆η)2 + (∆φ)2 < 0.4 centered around
the lepton is less than 10 % of the lepton ET (pT) for
electrons (muons). This lepton is called a tight lepton.
Loose charged lepton candidates pass all of the lepton se-
lection criteria except for the isolation requirement. We
reject events which have an additional tight or loose lep-
ton candidate in order to reduce the Z+jets and diboson
background rates.

Jets are reconstructed using a cone algorithm by sum-
ming the transverse calorimeter energy ET in a cone of
radius R ≤ 0.4. The energy deposition of an identified
electron candidate, if present, is not included in the jet
energy sum. The ET of a cluster is calculated with re-
spect to the z coordinate of the primary vertex of the
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FIG. 4: Distributions in (φ−η) space of the electron (a) and muon (b) selection categories, showing the coverage of the detector
that each lepton category provides. The muon categories are more complicated due to the geometrical limitations of the several
different muon detectors of CDF.

event. The energy of each jet is corrected [48] for the
η dependence and the nonlinearity of the calorimeter re-
sponse. Routine calibrations of the calorimeter response
are performed and these calibrations are included in the
jet energy corrections. The jet energies are also adjusted
by subtracting the extra deposition of energy from addi-
tional inelastic pp̄ collisions on the same bunch crossing
as the triggered event.

Reconstructed jets in events with identified charged
lepton candidates must have corrected ET> 20 GeV and
detector |η| < 2.8. Detector η is defined as the pseudora-
pidity of the jet calculated with respect to the center of
the detector. Only events with exactly two or three jets
are accepted. At least one of the jets must be tagged as
containing a B hadron by requiring a displaced secondary
vertex within the jet, using the secvtx algorithm [31].
Secondary vertices are accepted if the transverse decay
length significance (∆Lxy/σxy) is greater than or equal
to 7.5.

Events passing the /ET+jets trigger path and the EMC
muon segment requirements described above are also re-
quired to have two sufficiently separated jets: ∆Rjj > 1.
Furthermore, one of the jets must be central, with |ηjet| <
0.9, and both jets are required to have transverse ener-
gies above 25 GeV. These offline selection requirements
ensure full efficiency of the /ET+jets trigger path.

The vector missing ET (~/ET) is defined by

~/ET = −
∑

i

Ei
Tn̂i, (1)

i = calorimeter tower number with |η| < 3.6, (2)

where n̂i is a unit vector perpendicular to the beam axis
and pointing at the ith calorimeter tower. We also define

/ET = |~/ET|. Since this calculation is based on calorimeter
towers, 6ET is adjusted for the effect of the jet corrections
for all jets.

A correction is applied to ~/ET for muons since they tra-
verse the calorimeters without showering. The transverse
momenta of all identified muons are added to the mea-
sured transverse energy sum and the average ionization
energy is removed from the measured calorimeter energy
deposits. We require the corrected /ET to be greater than
25 GeV in order to purify a sample containing leptonic
W boson decays.

A portion of the background consists of multijet events
which do not contain W bosons. We call these “non-W”
events below. We select against the non-W background
by applying additional selection requirements which are
based on the assumption that these events do not have a
large /ET from an escaping neutrino, but rather the /ET

that is observed comes from lost or mismeasured jets. In
events lacking a W boson, one would expect small values
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of the transverse mass, defined as

MW
T =

√

2
(

p`
T

/ET − p`
x /ET

x − p`
y /ET

y)
. (3)

Because the /ET in events that do not contain W bosons
often comes from jets which are erroneously identified as

charged leptons, ~/ET often points close to the lepton can-

didate’s direction, giving the event a low transverse mass.
Thus, the transverse mass is required to be above 10 GeV
for muons and 20 GeV for electrons, which have more of
these events.

Further removal of non-W events is performed with a
variable called /ET significance (/ET,sig), defined as

/ET,sig =
/ET

√

∑

jets C2
JES cos2

(

∆φ
jet,~/ET

)

Eraw
T,jet + cos2

(

∆φ~ET,uncl,
~/ET

)

∑

ET,uncl

, (4)

where CJES is the jet energy correction factor [48], Eraw
T,jet

is a jet’s energy before corrections are applied, ~ET,uncl

refers to the vector sum of the transverse components
of calorimeter energy deposits not included in any re-
constructed jets, and

∑

ET,uncl is the sum of the mag-
nitudes of these unclustered energies. Central electron
events are required to have /ET,sig > 0.05MT + 3.5 and
/ET,sig > 2.5− 3.125∆φ/ET,jet2, where jet 2 is the jet with
the second-largest ET, and all energies are measured in
GeV. Plug electron events must have /ET,sig > 2 and
/ET > 45 − 30∆φ/ET,jet for all jets in the event. These
cuts reduce the amount of contamination from non-W
events substantially, as shown in the plots in Fig. 5.

To remove events containing Z bosons, we reject events
in which the trigger lepton candidate can be paired with
an oppositely-signed track such that the invariant mass
of the pair is within the range 76 GeV/c2 ≤ m`,track ≤
106 GeV/c2. Additionally, if the trigger lepton candi-
date is identified as an electron, the event is rejected if a
cluster is found in the electromagnetic calorimeter that,
when paired with the trigger lepton candidate, forms an
invariant mass in the same range.

IV. SIGNAL MODEL

In order to perform a search for a previously unde-
tected signal such as single top quark production, ac-
curate models predicting the characteristics of expected
data are needed for both the signal being tested and
the SM background processes. This analysis uses Monte
Carlo programs to generate simulated events for each sig-
nal and background process, except for non-W QCD mul-
tijet events for which events in data control samples are
used.

A. s-channel Single Top Quark Model

The matrix element generator madevent [49] is used
to produce simulated events for the signal samples. The
generator is interfaced to the CTEQ5L [50] parameteri-
zation of the parton distribution functions (PDFs). The
pythia [51, 52] program is used to perform the parton
shower and hadronization. Although madevent uses
only a leading-order matrix element calculation, stud-
ies [10] indicate that the kinematic distributions of s-
channel events are only negligibly affected by NLO cor-
rections.

B. t-channel Single Top Quark Model

The t-channel process is more complicated. Several au-
thors point out [10, 53, 54] that the leading-order contri-
bution to t-channel single top quark production as mod-
eled in parton-shower Monte Carlo programs does not
adequately represent the expected distributions of ob-
servable jets, which are better predicted by NLO calcu-
lations.

The leading-order process is a 2 → 2 process with a
b quark in the initial state: b + u → d + t, as shown
in Fig. 6(a). For antitop quark production, the charge
conjugate processes are implied. A parton distribution
function for the initial state b quark is used for the cal-
culation. Since flavor is conserved in the strong interac-
tion, a b̄ quark must be present in the event as well. In
what follows, this b̄ quark is called the spectator b quark.
Leading-order parton shower programs create the spec-
tator b quark through backward evolution following the
dglap scheme [55, 56, 57]. Only the low-pT portion of
the transverse momentum distribution of the spectator b
quark is modeled well, while the high-pT tail is not esti-
mated adequately [10]. In addition, the pseudorapidity
distribution of the spectator b quark, as simulated by the
leading-order process, is biased towards higher pseudora-
pidities than predicted by NLO theoretical calculations.
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FIG. 5: Plots of /ET,sig vs. MW
T for W+jets Monte Carlo, the selected data in the ` + /ET+2 jets sample, and the two

distributions subtracted for all CEM candidates. The black lines indicate the cuts which are applied. Events with lower /ET,sig

or MW
T are removed by the cuts.
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FIG. 6: The two different t-channel processes considered in
our signal model: (a) the 2 → 2 process and (b) the 2 → 3
process.

We improve the modeling of the t-channel single top
quark process by using two samples: one for the lead-
ing 2 → 2 process b + q → q′ + t, and a second one
for the 2 → 3 process in which an initial-state gluon
splits into bb̄, g + q → q′ + t + b̄. In the second process
the spectator b quark is produced directly in the hard
scattering described by the matrix element (Fig. 6(b)).
This sample describes the most important NLO contri-
bution to t-channel production and is therefore suitable
to describe the high-pT tail of the spectator b quark pT

distribution. This sample, however, does not adequately
describe the low-pT portion of the spectrum of the specta-
tor b quark. In order to construct a Monte Carlo sample
which closely follows NLO predictions, the 2 → 2 process
and the 2 → 3 process must be combined.

A joint event sample was created by matching the pT

spectrum of the spectator b quark to the differential cross
section predicted by the ztop program [10] which oper-

ates at NLO. The matched t-channel sample consists of
2 → 2 events for spectator b quark transverse momenta
below a cutoff, called KT, and of 2 → 3 events for trans-
verse momenta above KT. The rates of 2 → 2 and 2 → 3
Monte Carlo events are adjusted to ensure the continuity
of the spectator b quark pT spectrum at KT. The value
of KT is adjusted until the prediction of the fraction of t-
channel signal events with a detectable spectator b quark
jet – with pT > 20 GeV/c and |η| < 2.8 – matches the
prediction by ztop. We obtain KT = 20 GeV/c. All de-
tectable spectator b quarks with pT > 20 GeV/c of the
joint t-channel sample are simulated using the 2 → 3
sample.

Figure 7 illustrates the matching procedure and com-
pares the outcome with the differential pT and Q` ·η cross
sections of the spectator b quark, where Q` is the charge
of the lepton from W boson decay. Both the falling pT

spectrum of the spectator b quark and the slightly asym-
metric shape of the Q` · η distribution are well modeled
by the matched madevent sample. Figure 7(a) shows
the pT distribution of the spectator b quark on a logarith-
mic scale. The combined sample of t-channel events has
a much harder pT spectrum of spectator b quarks than
the 2 → 2 sample alone provides. The tail of the distri-
bution extends beyond 100 GeV/c, while the 2 → 2 sam-
ple predicts very few spectator b quarks with pT above
50 GeV/c.

C. Validation

It is important to evaluate quantitatively the model-
ing of single top quark events. We compare the kinematic
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FIG. 7: Matching of t-channel single top quark events of the 2 → 2 and the 2 → 3 process. The pT distributions of the
spectator b quark are shown, (a) on a logarithmic pT scale, and (b) on a linear pT scale. The ratio of 2 → 2 to 2 → 3 events
is adjusted such that the rate of spectator b quarks with pT > 20 GeV/c and |η| < 2.8 matches the theoretical prediction. The
fraction of these events is illustrated in (b) by the shaded area. The matched madevent sample reproduces both the rate and
the shape of the differential ztop pT (c) and Q` · η (d) cross section distributions of the spectator b quark.

distributions of the primary partons obtained from the s-
channel and the matched t-channel madevent samples
to theoretical differential cross sections calculated with
ztop [10]. We find, in general, very good agreement.
For the t-channel process in particular, the pseudorapid-
ity distributions of the spectator b quark in the two pre-
dictions are nearly identical, even though that variable
was not used to match the two t-channel samples.

One can quantify the remaining differences between
the Monte Carlo simulation and the theoretical calcula-
tion by assigning weights to simulated events. The weight
is derived from a comparison of six kinematic distribu-
tions: the pT and the η of the top quark and of the
two highest-ET jets which do not originate from the top-
quark decay. In case of t-channel production, we distin-
guish between b-quark jets and light-quark jets. The cor-
relation between the different variables, parameterized by
the covariance matrix, is determined from the simulated
events generated by madevent. We apply the single
top quark event selection to the Monte Carlo events and
add the weights. This provides an estimate of the de-

viation of the acceptance in the simulation compared to
the NLO prediction. In the W + 2 jets sample we find
a fractional discrepancy of (−1.8± 0.9)% (MC stat.) for
the t-channel, implying that the Monte Carlo estimate
of the acceptance is a little higher than the NLO pre-
diction. In the s-channel we find excellent agreement:
−0.3%± 0.7% (MC stat.). More details on the t-channel
matching procedure and the comparison to ztop can be
found in reference [58, 59]. The general conclusion from
our studies is that the madevent Monte Carlo events
represent faithfully the NLO single top quark production
predictions. The matching procedure for the t-channel
sample takes the main NLO effects into account. The re-
maining difference is covered by a systematic uncertainty
of ±1% or ±2% on the acceptance for s- and t-channel
events, respectively.

Recently, an even higher-order calculation of the t-
channel production cross section and kinematic distri-
butions has been performed [54], treating the 2 → 3
process itself at NLO. The production cross section in
this calculation remains unchanged, but a larger fraction
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of events have a high-pT spectator b within the detector
acceptance. This calculation became available after the
analyses described in this paper were completed. The
net effect is to slightly decrease the predicted t-channel
signal rate in the dominant sample with two jets and one
b tag, and to significantly raise the comparatively low
signal prediction in the double-tagged samples and the
three-jet samples, compensating each other. Thus, the
expected as well as the observed change of the outcome
is insignificant for the combined and the separate extrac-
tion of the signal cross section and significance.

D. Expected Signal Yields

The number of expected events is given by

ν̂ = σ · εevt · Lint (5)

where σ is the theoretically predicted cross section of the
respective process, εevt is the event detection efficiency,
and Lint is the integrated luminosity. The predicted cross
sections for t-channel and s-channel single top quark pro-
duction are quoted in section I. The integrated lumi-
nosity used for the analyses presented in this article is
Lint = 3.2 fb−1.

The event detection efficiency is estimated by perform-
ing the event selection on the samples of simulated events.
Control samples in the data are used to calibrate the
efficiencies of the trigger, the lepton identification, and
the b-tagging. These calibrations are then applied to the
Monte Carlo samples we use.

We do not use a simulation of the trigger efficiency in
the Monte Carlo samples; instead we calibrate the trig-
ger efficiency using data collected with alternate trigger
paths and also Z → `+`− events in which one lepton trig-
gers the event and the other lepton is used to calculate
the fraction of the time it, too, triggers the event. We
use these data samples to calculate the efficiency of the
trigger for charged leptons as a function of the lepton’s
ET and η. The uncorrected Monte Carlo-based efficiency
prediction, εMC is reduced by the trigger efficiency εtrig.
The efficiency of the selection requirements imposed to
identify charged leptons is estimated with data samples
with high-pT triggered leptons. We seek in these events
oppositely-signed tracks forming the Z mass with the
triggered lepton. The fraction of these tracks passing
the lepton selection requirements gives the lepton identi-
fication efficiency. The Z vetoes in the single top quark
candidate selection requirements enforce the orthogonal-
ity of our signal samples and these control samples we
use to estimate the trigger and identification efficiencies.

A similar strategy is adopted for using the data to cal-
ibrate the b-tag efficiency. At LEP, for example, single-
and double-b-tagged events were used [60] to extract the
b-tag efficiency and the b-quark fraction in Z decay. Jet
formation in pp̄ collisions involves many more processes,
however, and the precise rates are poorly predicted. A

jet originating from a b quark produced in a hard scat-
tering process, for example, may recoil against another
b jet, or it may recoil against a gluon jet. The invariant
mass requirement used in the lepton identification pro-
cedure to purify a sample of Z decays is not useful for
separating a sample of Z → bb̄ decays because of the low
signal-to-background ratio [61].

We surmount these challenges and calibrate the b-
tag efficiency in the data using the method described in
Ref. [31], and which is briefly summarized here. We select
dijet events in which one jet is tagged with the secvtx al-
gorithm, and the other jet has an identified electron can-
didate with a large transverse momentum with respect
to the jet axis in it, to take advantage of the character-
istic semileptonic decays of B hadrons. The purity of bb̄
events in this sample is nearly unity. We determine the
flavor fractions in the jets containing electron candidates
by fitting the distribution of the invariant mass of the
reconstructed displaced vertices to templates for b jets,
charm jets, and light-flavor jets, in order to account for
the presence of non-b contamination.

The fraction of jets with electrons in them passing the
secvtx tag is used to calibrate the secvtx tagging effi-
ciency of b jets which contain electrons. This efficiency is
compared with that of b jets passing the same selection
requirements in the Monte Carlo, and the ratio of the
efficiencies is applied to the Monte Carlo efficiency for
all b jets. Systematic uncertainites to cover differences in
Monte Carlo mismodeling of semileptonic and inclusive
B hadron jets are assessed. The b-tagging efficiency is ap-
proximately 45% per b jet from top quark decay, for b jets
with at least two tracks and which have |η| < 1. The ra-
tio between the data-derived efficiency and the Monte
Carlo prediction does not show a noticeable dependence
on the |η| of the jet or the jet’s ET.

The differences in the lepton identification efficiency
and the b-tagging between the data and the simulation
are accounted for by a correction factor εcorr on the single
top quark event detection efficiency. Separate correction
factors are applied to the single b-tagged events and the
double b-tagged events. Systematic uncertainties are as-
sessed on the signal acceptance due to the uncertainties
on these correction factors.

The samples of simulated events are produced such
that the W boson emerging from top quark decay is
only allowed to decay into leptons, that is eνe, µνµ, and
τντ . Tau lepton decay is simulated with tauola [62].
The value of εMC, the fraction of all signal MC events
passing our event selection requirements, is multiplied
by the branching fraction of W bosons into leptons,
εBR = 0.324. The selection efficiencies for events in which
the W boson decays to electrons and muons are similar,
but the selection efficiency for W → τντ decays is less,
because many tau decays do not contain leptons, and also
because the pT spectrum of tau decay products is softer
than those of electrons and muons. In total, the event
detection efficiency is given by

εevt = εMC · εBR · εcorr · εtrig (6)
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FIG. 8: Some representative diagrams of W+jets production.
The production cross sections of these processes are much
larger than that of single top quark production.

Including all trigger and identification efficiencies we find
εevt(t-channel) = (1.2 ± 0.1)% and εevt(s-channel) =
(1.8± 0.1)%. The predicted signal yields for the selected
two- and three-jet events with one and two (or more)
b-tagged jets are listed in Tables I and II.

V. BACKGROUND MODEL

The final state of a single top quark event – a charged
lepton, missing transverse energy from the undetected
neutrino, and two or three jets with one or more B
hadrons, is also the final state of the Wbb̄ process, which
has a much larger cross section. Other processes which
produce similar final states, such as Wcc̄ and tt̄, also
mimic the single top quark signature because of misre-
construction or because of the loss of one or more com-
ponents of the expected final state. A detailed under-
standing of the rates and of the kinematic features of the
background processes is necessary in order to accurately
measure the single top quark production cross section.

The largest background process is the associated pro-
duction of a leptonically decaying W boson and two or
more jets. Representative Feynman diagrams are shown
in Fig. 8. The cross section for W+jets production is
much larger than that of the single top quark signal, and
the W+jets production cross sections are difficult to cal-
culate theoretically. Furthermore, W+jets events can be
kinematically quite similar to the signal events we seek,
and in the case that the jets contain b quarks, the final
state can be identical to that of single top quark produc-
tion. The narrow top quark width, the lack of resonant
structure in W+jets events, and color suppression make
the quantum-mechanical interference between the signal
and the background very small.

Top quark pair production, in which one or two jets, or
one charged lepton, has been lost, also constitutes an im-
portant background process (Fig. 9). There are also con-
tributions from the diboson production processes WW ,
WZ, and ZZ, which are shown in Fig. 10, Z+jets pro-
cesses in which one charged lepton from Z boson decay is
missed, (Fig. 11(a)), and QCD multijet events, which do
not contain W bosons but instead have a fake lepton and
mismeasured /ET (Fig. 11(b)). The rates and kinematic
properties of these processes must be carefully modeled
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FIG. 9: Feynman diagrams of the tt̄ background to single top
quark production. To pass the event selection, these events
must have one charged lepton (a), or one or two hadronic jets
(b), that go undetected.
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FIG. 10: Feynman diagrams for diboson production, which
provides a small background for single top quark production.

and validated with data in order to make a precise mea-
surement of single top quark production.

Because there are many different background pro-
cesses, we use a variety of methods to predict the back-
ground rates. Some are purely based on Monte Carlo
simulations scaled to high-order predictions of the cross
section (such as tt̄); some are purely data-based (non-
W ); and some require a combination of Monte Carlo and
data (W+jets).

A. Monte Carlo Based Background Processes

We use samples of simulated Monte Carlo events to es-
timate the contributions of tt̄, diboson, and Z+jets pro-
duction to the b-tagged lepton+jets sample. The corre-
sponding event detection efficiencies εevt are calculated
in the same way as the single top quark processes de-
scribed in Section IV and Equation 6. We apply Equa-
tion 5 to calculate the final number of expected events.
Therefore, it is essential that the given physical process
is theoretically well understood, i.e., the kinematics are
well described in simulated events and the cross section
is well known.

To model the tt̄ production contribution to our selected
samples, we use pythia [52] Monte Carlo samples, scaled
to the NLO theoretical cross section prediction [63, 64]
of σtt̄ = (6.70 ± 0.83) pb, assuming mt = 175 GeV/c2.
The systematic uncertainty contains a component which
covers the differences between the calculation chosen and
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FIG. 11: Representative Feynman diagrams for (a) Z+jets
production and (b) non-W events, in which a jet has to be
misidentified as a lepton and /ET must be mismeasured to
pass the event selection.

others [19, 65]. The event selection efficiencies and the
kinematic distributions of tt̄ events are predicted using
these pythia samples. Because the Monte Carlo effi-
ciencies for lepton identification and b tagging differ from
those observed in the data, the tt̄ efficiencies estimated
from the Monte Carlo are adjusted by factors εcorr, which
are functions of the numbers of leptonically decaying W
bosons and b-tagged jets.

To estimate the expected number of diboson events
in our selected data sample we use the theoretical cross
section predicted for a center of mass energy of

√
s =

2.00 TeV using the mcfm program [66] and extrap-
olate the values to

√
s = 1.96 TeV. This leads to

σWW = (13.30 ± 0.80) pb, σWZ = (3.96 ± 0.34) pb,
and σZZ = (1.57 ± 0.21) pb. The cross section uncer-
tainties reported in [66] are smaller than those obtained
with mcfm Version 5.4; we quote here the larger uncer-
tainties. The event selection efficiencies and the kine-
matic distributions of diboson events are estimated with
pythia Monte Carlo samples, with corrections applied
to bring the lepton identification and b-tagging efficiency
in line with those estimated from data samples.

Events with Z boson production in association with
jets are simulated using alpgen [67], with pythia used
to model the parton shower and hadronization. The
Z+jets cross section is normalized to that measured by
CDF [68]: σZ · Br(Z → `+`−) = (336.0± 8.0) pb, where
Br(Z → `+`−) is the branching ratio of the Z boson to
a single species of charged lepton; lepton universality is
assumed.

B. Non-W Multijet Events

Estimating the non-W multijet contribution to the
sample is challenging because of the difficulty of simu-
lating these events. A variety of QCD processes produce
copious amounts of multijet events, but only a tiny frac-
tion of these events pass our selection requirements. In
order for an event lacking a leptonic W boson decay to
be selected, it must have a fake lepton or a real lepton
from a heavy flavor quark decay. In the same event, the
/ET must be mismeasured. Both of these instrumental

fake rates are difficult to model reliably in Monte Carlo.

The non-W background is modeled by selecting data
samples which have less stringent selection requirements
than the signal sample. These samples, which are de-
scribed below, are dominated by non-W events with sim-
ilar kinematic distributions as the non-W contribution to
the signal sample. The normalization of the non-W pre-
diction is separately determined by fitting templates of
the /ET distribution to the data sample.

We use two different data samples to model the non-W
multijet contributions. One sample is based on the prin-
ciple that non-W events must have a jet which passes
all lepton identification cuts. A data sample of inclusive
jets is subjected to all of our event selection requirements
except the lepton identification requirements. In lieu of
an identified lepton, a jet is required with ET > 20 GeV.
This jet must contain fewer than four tracks and 80–95%
of its total calorimetric energy must be in the electro-
magnetic calorimeter, in order to simulate a misidenti-
fied electron. The b-tagging requirement is relaxed to
requiring a taggable jet instead of a tagged jet in order
to increase the size of the selected sample. A taggable jet
is one that is within the acceptance of the silicon track-
ing detector and which has at least two tracks in it. This
sample is called the jet-based sample.

The other sample takes advantage of the fact that fake
leptons from non-W events have difficulty passing the
lepton selection requirements. We look at lepton can-
didates in the central electron trigger that fail at least
two of five identification cuts that do not depend on the
kinematic properties of the event, such as the fraction
of energy in the hadronic calorimeter. These objects are
treated as leptons and all other selection cuts are ap-
plied. This sample has the advantage of having the same
kinematic features as the central electron sample. This
sample is called the ID-based sample.

The two samples described above are designed to
model events with misidentified electron candidates. Be-
cause of the similarities in the kinematic properties of the
ID-based and the jet-based events, we use the union of
the two samples as our non-W model for triggered cen-
tral electrons. Remarkably, the same samples also simu-
late the kinematics of events with misidentified triggered
muon candidates; we use the samples again to model
those events. Since the kinematic properties of the PHX
and EMC candidates are sculpted by the substantially
different trigger requirements, only the jet-based sample
is used which models the corresponding non-W contribu-
tion well.

The non-W background must be determined not only
for the data sample passing the event selection require-
ments, but also for the control samples which are used
to determine the W+jets backgrounds, as described in
Sections V C and V D. The expected numbers of non-W
events are estimated in pretag events – events in which
all selection criteria are applied except the secondary ver-
tex tag requirement. We require that at least one jet in
a pretagged event is taggable. In order to estimate the
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non-W rates in this sample, we also remove the /ET event
selection requirement, but we retain all other non-W re-
jection requirements. We fit templates of the /ET distri-
butions of the W+jets and the non-W samples to the /ET

spectra of the pretag data, holding constant the normal-
izations of the additional templates needed to model the
small diboson, tt̄, Z+jets, and single top backgrounds.
The fractions of non-W events are then calculated in the
sample with /ET > 25 GeV. The inclusion or omission
of the single top contribution to these fits has a negli-
gible impact on the non-W fractions that are fit. These
fits are performed separately for each lepton category be-
cause the instrumental fake lepton rates are different for
electrons and muons, and for the different detector com-
ponents. In all lepton categories except PHX, the full
/ET spectrum is used in the fit. For the PHX electron
sample, we require /ET > 15 GeV in order to minimize
sensitivity to the trigger. The fits in the pretag region
are also used to estimate the W+jets contribution in the
pretag region, as described in Section V C. As Fig. 12
shows, the resulting fits describe the data quite well.

Estimates of the non-W yields in the tagged sam-
ples used to search for the single top signal are also
needed. These samples are more difficult because the
non-W modeling samples are too small to apply tagging
directly – only a few events pass the secondary vertex
cut. However, since the data show no dependence of the
b-tagging rate on /ET, we use the untagged non-W tem-
plates in the fits to the /ET distributions in the tagged
samples. These fits are used to extract the non-W frac-
tions in the signal samples. As before, the Monte Carlo
predictions of diboson, tt̄, Z+jets, and single top pro-
duction are held constant and only the normalizations
of the W+jets and the non-W templates are allowed to
float. The resulting shapes are shown in Fig. 13 for the
single-tagged sample, and these are used to derive the
non-W fractions in the signal samples. As before, the
inclusion or omission of the single top contributions in
the fits has a negligible effect on the fitted non-W frac-
tions. Because of the uncertainties in the tagging rates,
the template shapes, and the estimation methods, the es-
timated non-W rates are given systematic uncertainties
of ±40% in single-tagged events and ±80% in double-
tagged events. These uncertainties cover the differences
in the results obtained by fitting different variables than
/ET, as well as by changing the histogram binning, vary-
ing the fit range, and using alternative samples to model
the non-W background. The uncertainty in the double-
tagged non-W prediction is larger because of the larger
statistical uncertainty arising from the smaller size of the
double-tagged sample.

C. W+Heavy Flavor Contributions

Events with a W boson accompanied by heavy fla-
vor production constitute the majority of the b-tagged
lepton+jets sample. These processes are Wbb̄, shown

in Fig. 8(a), Wcc̄, which is the same process but with
charm quarks replacing the b quarks, and Wcj shown in
Fig. 8(b). Each process may be accompanied by more
jets and pass the event selection requirements for the
W+3 jets signal sample. Jets may fail to be detected, or
they may fail to pass our selection requirements, and such
events may fall into the W+1 jet control sample. While
these events can be simulated using the alpgen genera-
tor, the theory uncertainties on the cross sections of these
processes remain large compared with the size of the sin-
gle top quark signal [69, 70, 71, 72, 73, 74, 75, 76]. It is
because of these large a priori uncertainties on the back-
ground predictions and the small signal-to-background
ratios in the selected data samples that we must use ad-
vanced analysis techniques to purify further the signal.
We also use the data itself, both in control samples and
in situ in the samples passing all selection requirements,
to constrain the background rates, reducing their sys-
tematic uncertainties. The in situ fits are described in
Section IX, and the control sample fits are described be-
low.

The control samples used to estimate the W+ heavy
flavor predictions and uncertainties are the pretagged
W +n jets samples and the tagged W +1 jet sample. We
use the alpgen+pythia Monte Carlo model to extrap-
olate the measurements in the control samples to make
predictions of the W+heavy flavor background contri-
butions in the data samples passing our signal selection
requirements. The pretagged W +n jets samples are used
to scale the alpgen predictions, and the tagged W + 1
jet sample is used to check and adjust alpgen’s predic-
tions of the fractions of W+jets events which are Wbb̄,
Wcc̄, and Wcj events. A full description of the method
follows.

The number of pretag W+jets events is estimated by
assuming that events not included in the predictions
based on Monte Carlo (these are the tt̄ and diboson pre-
dictions – the single top quark signal is a negligible com-
ponent of the pretag sample) or non-W multijet events,
are W+jets events. That is:

Npretag
W+jets = Npretag

data × (1 − fpretag
non-W ) − Npretag

MC (7)

where Npretag
data is the number of observed events in the

pretag sample, fpretag
non-W is the fraction of non-W events

in the pretag sample, as determined from the fits de-
scribed in Section V B, and Npretag

MC is the expected num-
ber of pretag tt̄ and diboson events. Alpgen typically
underestimates the inclusive W+jets rates by a factor of
roughly 1.4 [77]. To estimate the yields of Wbb̄, Wcc̄,
and Wcj events, we multiply this data-driven estimate
of the W+jets yield by heavy flavor fractions.

The heavy flavor fractions in W+jets events are also
not well predicted by our alpgen+pythia model. In
order to improve the modeling of these fractions, we per-
form fits to templates of flavor-separating variables in the
b-tagged W+1 jet data sample, which contains a vanish-
ingly small component of single top quark signal events
and is not otherwise used in the final signal extraction
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FIG. 12: Fits to /ET distributions in the pretag samples for the five different lepton categories in W+two jet events. The
fractions of non-W events are estimated from the portions of the templates above the /ET thresholds shown by the arrows.
Overflows are collected in the highest bin of each histogram. The data are indicated with points with error bars, and the
shaded histograms show the best-fit predictions. The non-W templates are not shown stacked, but the W+jets and “Others”
templates are stacked. The unshaded histogram is the sum of the fitted shapes.
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FIG. 13: Fits to /ET distributions in the single-tagged sample for the five different lepton categories in W+2 jet events. The
fraction of non-W events is estimated from the fraction of the template above the /ET threshold shown by the arrows. Overflows
are collected in the highest bin of each histogram. The data are indicated with points with error bars, and the shaded histograms
show the best-fit predictions. The non-W template is not shown stacked, but the W+jets and “Others” templates are stacked.
The unshaded histogram is the sum of the fitted shapes.
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procedure. This sample is quite large and is almost en-
tirely composed of W+jets events. We include Monte
Carlo models of the small contributions from tt̄ and di-
boson events as separate templates, normalized to their
SM expected rates, in the fits to the data. Care must be
exercised in the estimation of the W+heavy flavor frac-
tions, because fitting in the W+1 jet sample and using
the fit values for the W+2 jet and W+3 jet samples is
an extrapolation. We seek to estimate the b and charm
fractions in these events with as many independent meth-
ods as possible and we assign generous uncertainties that
cover the differences in the different estimations of the
rates.

We fit the distribution of the jet-flavor separator bNN

described in Section VI. Template distributions are cre-
ated based on alpgen+pythia Monte Carlo samples for
the W+LF, Wcc̄, Wcj, Wbb̄ Z+jets processes. The tt̄
and diboson templates are created using pythia Monte
Carlo samples. The non-W model described in Sec-
tion V B is also used. The W+LF template’s rate is con-
strained by the data-derived mistag estimate, described
in Section V D within its uncertainty; the other W+jets
templates’ rates are not constrained. The tt̄, diboson,
Z+jets and non-W contributions are constrained within
their uncertainties. The Wbb̄ and Wcc̄ components float
in the fit but are scaled with the same scaling factor, as
the same diagrams, with b and c quarks interchanged,
contribute in the alpgen model, and we expect a simi-
lar correspondence for the leading processes in the data.
We also let the Wcj fraction float in the fit. The best fit
in the W+1 jet sample is shown in Fig. 14(b).

The fit indicates that the alpgen-predicted Wbb̄ +
Wcc̄ fraction must be multiplied by 1.4± 0.4 in order for
the templates to match the data, and the best-fit value
of the Wcj fraction is also 1.4 ± 0.4 larger than that
predicted by alpgen. In addition to the fit to the bNN

distribution, we also fit the W+heavy flavor fractions in
the b-tagged W+1-jet sample with another variable, the
reconstructed invariant mass of the secondary vertex. We
perform this alternate fit in our standard b-tagged sample
as well as in one with loosened b-tag requirements.

We obtain additional information from [78], in which
a direct measurement of the Wc fraction is made using
lepton charge correlations. The central value of this mea-
surement agrees well with the Monte Carlo predictions.
We thus set the multiplicative factor of the Wc compo-
nent to 1.0 ± 0.3 for use in the two- and three-jet bins.

The 30% uncertainties assessed on the Wbb̄+Wcc̄ and
Wcj yields cover the differences in the measured fit values
and also approximates our uncertainty in extrapolating
this fraction to W+2 and 3 jet events. We check these
extrapolations in the W+2 and 3 jet events as shown
in Figs. 14(c) and 14(d); no additional fit is performed
for this comparison. The rates and flavor compositions
match very well with the observed data in these samples.

Since the yields of W+heavy flavor events are esti-
mated from b-tagged data using the same secvtx algo-
rithm as is used for the candidate event selection, the un-

certainty in the b-tagging efficiency does not factor into
the prediction of these rates.

D. Rates of Events with Mistagged Jets

We define W+LF events to be those that contain a lep-
tonically decaying W boson plus one or more jets, none
of which contains a b or c quark. Some W+LF events
pass our event selection requirements due to the pres-
ence of mistagged jets. A mistagged jet is one which
does not contain a weakly-decaying B or charm hadron
but nonetheless passes all of the secondary vertex tag-
ging requirements of the secvtx algorithm [31]. Jets
are mistagged for several reasons: tracking errors such
as hit misassignment or resolution effects cause the re-
construction of false secondary vertices, the multi-prong
decays of long-lived particles like the K0

s and the Λ0 sup-
ply real secondary vertices, and nuclear interactions with
the detector material also provide a real source of non-b/c
secondary vertices.

The estimation of the background yields from tracking
resolution related mistags is accomplished without the
use of detector simulation. The procedure is to measure
the fractions of jets which have negative decay lengths
(defined below) to estimate the fraction of light-flavor
jets which have incorrect positive decay lengths. This
fraction is adjusted in order to account for the asymme-
try between the negative decay length distribution and
the positive decay length distribution, and to account for
the heavy-flavor contribution in the jet data, to obtain
the mistag probability. This probability is multiplied by
an estimate of W+LF jet yield in each of our samples,
separately for each lepton category and jet-number cat-
egory. Each of these steps is described in detail below.

Events passing inclusive jet triggers with vertices with
negative two-dimensional (2D) decay lengths comprise
the control sample used to estimate the mistag rate. The
2D decay length Lxy is the magnitude of the displacement
from the primary vertex to the reconstructed secondary
vertex, projected first onto the plane perpendicular to the
beam axis, and then projected again onto the jet axis’s
projection in the plane perpendicular to the beam axis.
The sign is given by the sign of the dot product of the 2D
decay length and the jet momentum. Tracking resolution
effects are expected to produce a symmetric distribution
of the 2D decay length of light-flavor misreconstructed
secondary vertices, centered on zero. A jet is said to be
“negatively tagged” if the transverse decay length signif-
icance Lxy/σLxy < −7.5, while Lxy/σLxy > 7.5 defines a
“positively tagged” jet.

The per-jet mistag rate is not a single number but
rather it is parameterized as a function of six kinematic
variables: the ET and η of the jet, the number of tracks
in the jet, the scalar sum of transverse energy of the tight
jets, the number of reconstructed primary vertices, and
the z coordinate of the primary vertex associated with
the jet. Since the negative tag rate does not fully reflect
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FIG. 14: Templates (a) of the jet flavor separator bNN for W+light, W+charm (adding the Wcc̄ and Wcj contributions
because of their similar shapes), and W+bottom events. The template labeled “Other” represents the diboson and Z+jets
contributions. The strong discrimination bNN provides to separate jet flavors makes it a powerful variable in multivariate
analyses. Panel (b) shows the outcome of the fit to the W+1 jet data sample allowing the b, c, and light-flavor components to
float as described in Section V. Panels (c) and (d) compare the data and the corresponding predictions in the W+2 jet and
W+3 jet samples. In panels (b) through (d), the data are indicated with points with error bars, and the model predictions are
shown with shaded histograms, stacked in the same order as the legend.

the positive mistags due to the decays of long-lived par-
ticles and interactions with the detector material, a cor-
rection factor αβ for the mistag asymmetry is applied.
The factor α corrects for the asymmetry between the
positive and negative tag rates of light-flavor jets, and
the factor β corrects for the presence of b jets in the jet
samples used to derive the mistag rate. These correc-
tion factors are extracted from fits to distributions of the
invariant mass of the reconstructed secondary vertex in
tagged jets in an inclusive jet sample. A systematic un-
certainty is derived from fits to templates of pseudo-cτ ,
which is defined as Lxy

m
pT

[31], where m is the invariant

mass of the tracks in the displaced vertex, and pT is the
magnitude of the vector sum of the transverse momenta
of the tracks in the displaced vertex. The systematic
uncertainty on the asymmetry factor αβ is the largest

component of the uncertainty on the mistag estimate.
Another component is estimated from the differences in
the negative tag rates computed with different jet data
samples with varying trigger requirements. The average
rate for jets to be mistagged is approximately 1%, al-
though it depends strongly on the jet ET.

The per-jet mistag probabilities are multiplied by data-
driven estimates of the W+LF yields, although we must
subtract the yields of the other components. We subtract
the pretagged W+heavy flavor contributions from the
pretagged W+jets yield of Equation 7 to estimate the
W+LF yield:

Npretag
W+LF = Npretag

W+jets − Npretag

Wbb̄
− Npretag

Wcc̄ − Npretag
Wcj (8)

The pretagged W+heavy flavor contributions are esti-
mated by dividing the tagged W+heavy flavor contri-
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FIG. 15: The number of events predicted and observed for
W+jets events in which at least one jet is b-tagged. The data
are indicated with points, and the shaded histograms show
the signal and background predictions which are stacked to
form the total prediction. The stacking order is the same as
the legend. The systematic uncertainty on the rates is far
too large to use a simple counting experiment to measure the
single top quark cross section.

butions by the b-tagging efficiencies for each event cate-
gory. The mistag parameterization is applied to each of
the Monte Carlo and data samples used in Equations 7
and 8, in order for the total mistag yield prediction not to
be biased by differences in the kinematics of the several
W+jets flavor categories.

We use alpgen+pythia Monte Carlo samples to pre-
dict the kinematics of W+LF events for use in the anal-
yses of this paper. The mistag rate parameterization de-
scribed above is applied to each jet in W+LF MC events,
and these rates are used to weight the events to predict
the yield of mistagged events in each bin of each his-
togram of each variable.

The predicted numbers of background events, signal
events, and the overall expected normalizations are given
in Tables I, for events with exactly one b tag, and in Ta-
ble II for events with two or three b tags. Only two
selected events in the data have three b tags, consistent
with the expectation assuming that the third tag is a
mistag. The observed event counts and predicted yields
are summarized graphically as functions of jet multiplic-
ity in Fig. 15.

E. Validation of Monte Carlo Simulation

Because multivariate analyses depend so heavily on
properly simulating events, it is very important to val-
idate the modeling of the distributions in Monte Carlo
by checking them with the data. We do this by com-
paring hundreds of data and Monte Carlo distributions.
We make comparisons in control samples in which no jets
have been b-tagged to test the W+LF shapes, we test the

modeling of W+1 jet events to examine W+heavy flavor
fraction and shapes, we compare the data and Monte
Carlo distributions of kinematic variables in the signal
regions of tagged 2- and 3-jet events to check the model-
ing of all of these variables, and we verify the modeling
of the correlations between the discriminating variables.

A sample of the validation plots we examine is shown
in Figures 16, 17, and 18. The close match of the distri-
butions gives confidence in the results. The validations
of the modeling of other observable quantities are shown
later in this paper.

Out of the hundreds of distributions checked for
discrepancies, only two distributions in the untagged
W+jets data were found to be poorly simulated by our
Monte Carlo model: the pseudorapidity of the lowest-
energy jet in both W +2 jet and W+3 jet events and the
distance between the two jets in φ− η space in W +2 jet
events. These discrepancies are used to estimate system-
atic uncertainties on the shapes of our final discriminant
variables. These distributions and the discussion of as-
sociated systematic uncertainties are presented in Sec-
tion VIII.

VI. JET FLAVOR SEPARATOR

In our event selection, we identify b-quark jets by re-
quiring a reconstructed secondary vertex. A large frac-
tion, 48% of the expected background events with b-
tagged jets have no B hadrons in them at all. This is
due to the long lifetime and the mass of charm hadrons,
the false reconstruction of secondary vertices in light jets,
and the fact that the fraction of pretagged W+jets events
containing B hadrons is small compared with the charm
and light-flavored components. Tagged jets without B
hadrons in them can be separated from those containing
B hadrons by extending the vertex requirement using re-
constructed quantities that differentiate the two classes
of jets. These quantities take advantage of the long life-
time (τ ≈ 1.6 ps) and the large mass (m ≈ 5 GeV/c2) of
B hadrons.

The invariant mass of the tracks in the reconstructed
vertex is larger on average for vertices arising from a B
hadron decay than it is in vertices in jets that do not con-
tain B hadrons. The number of tracks in the secondary
vertex is also on average larger, and the significance of
the transverse decay length (∆Lxy/σxy) is larger for B
hadron vertices.

In addition to the vertex properties, attributes of the
tracks in the jet are suitable to discriminate jets contain-
ing a B hadron. Tracks of charged particles originating
from the decay of a B hadron have larger impact param-
eters and higher transverse momenta relative to the jet
axis. The presence of semileptonic B hadron decays in-
creases the number and transverse momenta relative to
the jet axis of electrons and muons in b jets as compared
to non-b jets.

To make full use of all discriminating quantities and
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FIG. 16: Validation plots comparing data and Monte Carlo for basic kinematic quantities for events with two jets and at least
one b tag. The data are indicated with points, and the shaded histograms show the signal and background predictions which
are stacked to form the total prediction. The stacking order follows that of the legend.
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FIG. 17: Validation plots comparing data and Monte Carlo for basic kinematic quantities for events with three identified
jets and at least one b tag. The data are indicated with points, and the shaded histograms show the signal and background
predictions which are stacked to form the total prediction. The stacking order follows that of the legend.
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TABLE I: Summary of the predicted numbers of signal and background events with exactly one b tag, with systematic
uncertainties on the cross section and Monte Carlo efficiencies included. The total numbers of observed events passing the
event selections are also shown. The W + 2 jets and W + 3 jets samples are used to test for the signal, while the W + 1 jets
and W + 4 jets samples are used to check the background modeling.

W + 1 jet W + 2 jets W + 3 jets W + 4 jets

Wbb̄ 823.7 ± 249.6 581.1 ± 175.1 173.9 ± 52.5 44.8 ± 13.7

Wcc̄ 454.7 ± 141.7 288.5 ± 89.0 95.7 ± 29.4 27.2 ± 8.5

Wcj 709.6 ± 221.1 247.3 ± 76.2 50.8 ± 15.6 10.2 ± 3.2

Mistags 1147.8 ± 166.0 499.1 ± 69.1 150.3 ± 21.0 39.3 ± 6.2

Non-W 62.9 ± 25.2 88.4 ± 35.4 35.4 ± 14.1 7.6 ± 3.0

tt̄ production 17.9 ± 2.6 167.6 ± 24.0 377.3 ± 54.8 387.4 ± 54.8

Diboson 29.0 ± 3.0 83.3 ± 8.5 28.1 ± 2.9 7.1 ± 0.7

Z+jets 38.6 ± 6.3 34.8 ± 5.3 14.6 ± 2.2 4.0 ± 0.6

Total Background 3284.1 ± 633.8 1990.1 ± 349.6 926.1 ± 113.4 527.7 ± 60.3

s-channel 10.7 ± 1.6 45.3 ± 6.4 14.7 ± 2.1 3.3 ± 0.5

t-channel 24.9 ± 3.7 85.3 ± 12.6 22.7 ± 3.3 4.4 ± 0.6

Total Prediction 3319.7 ± 633.8 2120.5 ± 350.1 963.4 ± 113.5 535.4 ± 60.3

Observation 3516 2090 920 567

TABLE II: Summary of predicted numbers of signal and background events with two or more b tags, with systematic uncer-
tainties on the cross section and Monte Carlo efficiencies included. The total numbers of observed events passing the event
selections are also shown. The W + 2 jets and W + 3 jets samples are used to test for the signal, while the W + 4 jets sample
are used to check the background modeling.

W + 2 jets W + 3 jets W + 4 jets

Wbb̄ 75.9 ± 23.6 27.4 ± 8.5 8.2 ± 2.6

Wcc̄ 3.7 ± 1.2 2.4 ± 0.8 1.1 ± 0.4

Wcj 3.2 ± 1.0 1.3 ± 0.4 0.4 ± 0.1

Mistags 2.2 ± 0.6 1.6 ± 0.4 0.7 ± 0.2

Non-W 2.3 ± 0.9 0.2 ± 0.1 2.4 ± 1.0

tt̄ production 36.4 ± 6.0 104.7 ± 17.3 136.0 ± 22.4

Diboson 5.0 ± 0.6 2.0 ± 0.3 0.6 ± 0.1

Z+jets 1.7 ± 0.3 1.0 ± 0.2 0.3 ± 0.1

Total Background 130.4 ± 26.8 140.6 ± 19.7 149.8 ± 22.5

s-channel 12.8 ± 2.1 4.5 ± 0.7 1.0 ± 0.2

t-channel 2.4 ± 0.4 3.5 ± 0.6 1.1 ± 0.2

Total Prediction 145.6 ± 26.9 148.6 ± 19.7 151.9 ± 22.5

Observation 139 166 154

their correlations, the variables are used as inputs to a
neural network which is applied to jets selected by the
secvtx secondary vertex tagger [79]. This network is
trained with simulated events of single top quark pro-
duction and the main background processes, mixed ac-
cording to the background estimation. Processes with
secondary vertices due to B hadron decays are treated as
signal events, namely single top quark, tt̄, and Wbb̄ pro-
duction. Physical processes containing no b quarks but
charm and light flavors are treated as background: Wcc̄,

Wcj, and W + light jets.
The NeuroBayes package [80] used for the neural-

network jet flavor separator combines a three-layer feed
forward neural network with a complex robust prepro-
cessing. Transforming the input variables to be dis-
tributed as unit-width Gaussians reduces the influence of
long tails; diagonalization and rotation transform the co-
variance matrix of the variables into a unit matrix. The
neural network uses Bayesian regularization techniques
for the training process. The network infrastructure con-
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FIG. 18: Validation plots comparing data and Monte Carlo for missing transverse energy for events with two jets (a) and three
jets (b), both with at least one b tag. The data are indicated with points, and the shaded histograms show the signal and
background predictions which are stacked to form the total prediction. The stacking order follows that of the leged.

sists of one input node for each input variable plus one
bias node, ten hidden nodes, and one output node which
gives a continuous output variable bNN in the interval
[−1, 1]. Jets with secondary vertices induced by the de-
cay of a B hadron tend to have bNN values close to 1,
while jets with falsely reconstructed vertices tend to have
bNN values near −1.

The significances of the training variables are deter-
mined automatically during the preprocessing in Neu-

roBayes. The correlation matrix of all preprocessed in-
put variables is calculated, including the correlation of all
variables to the target variable, which is +1 for jets with
B hadron decays and −1 for all other jets. The variables
are omitted one at a time to determine the loss of total
correlation to the target caused by their removal. The
variable with the smallest loss of correlation is discarded
leading to an (n−1)-dimensional correlation matrix. The
same procedure is repeated with the reduced correlation
matrix to find the least important of the (n−1) remaining
variables. The significance of each variable is calculated
by dividing the loss of correlation induced by its removal
by the square root of the sample size. We investigated 50
candidate input variables but chose to include as inputs
only those with a significance larger than 3.0, of which
there are 25.

Because the neural-network jet flavor separator is
trained using simulated events, it is essential to verify
that the input and output distributions are modeled well,
and to assess systematic uncertainties where discrepan-
cies are seen. The shapes of the input variable distri-
butions in the data are found to be reasonably well re-
produced by the simulation. We also examine the dis-
tribution of bNN for both b signal and non-b background.
The b signal distribution is checked with double-secvtx-
tagged dijet events and compared against Monte Carlo
jets with B hadron decays. One jet in addition is re-

quired to have an electron with a large transverse mo-
mentum with respect to the jet axis, in order to purify
further the b content of the sample. The jet opposite to
the electron-tagged jet is probed for its distribution of
the neural network output. The distribution of bNN in
these jets is well simulated by that of b jets in the Monte
Carlo [79].

To test the response of the network to light-flavored
jets, negative-tagged jets were tested in data and Monte
Carlo. A correction function was derived [79] to adjust
for the small discrepancy observed in the output shape.
This correction function is parameterized in the sum of
transverse energies in the event, the number of tracks per
jet, and the transverse energy of the jet. The correction
function is applied to light-flavored and charm Monte
Carlo jets in the analyses presented in this paper, but
not to b jets. The uncorrected neural network outputs are
used to evaluate systematic uncertainties on the shapes
of the final discriminant distributions.

The resulting network output bNN distinguishes the b
signal from the charm and light-flavored background pro-
cesses with a purity that increases with increasing bNN,
as can be seen in Fig. 14(a). Furthermore, the network
gives very similar shapes for different b-quark-producing
processes, indicating that it is sensitive to the properties
of b-quark jets and does not depend on the underlying
processes that produce them.

Not only is bNN a valuable tool for separating the sin-
gle top quark signal from background processes that do
not contain b jets, it is also valuable for separating the
different flavors of W+jets events, which is crucial in
estimating the background composition. As described
in Section V, the distribution of bNN is fit in b-tagged
W+1 jet events, and the heavy-flavor fractions for b and
charm jets are extracted. Using also a direct measure-
ment of the Wc rate [78], predictions are made of the b
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and charm jet fractions in the two- and three-jet bins.
These predictions are used to scale the alpgen Monte
Carlo samples, which are then compared with the data
in the two- and three-jet b-tagged samples, without refit-
ting the heavy-flavor composition, as shown in Fig. 14(c)
and (d). The three-jet sample has a larger sample of tt̄
events which are enriched in b jets. The successful mod-
eling of the changing flavor composition as a function of
the number of identified jets provides confidence in the
correctness of the background simulation.

All multivariate methods described here use bNN as
an input variable, and thus we need bNN values for all
Monte Carlo and data events used to model the final dis-
tributions. For the mistagged W+LF shape prediction,
we use the W+LF Monte Carlo sample, where the events
are weighted by the data-based mistag prediction for each
taggable jet. This procedure improves the modeling over
what would be obtained if Monte Carlo mistags were
used, as the mistag probabilities are based on the data,
and it increases the sample size we use for the mistag
modeling. An issue that arises is that parameterized
mistagged events do not have bNN values and random
values must be chosen for them from the distribution in
light-flavor events. If a W+LF event has more than one
taggable jet, then random values are assigned to both
jets. These events are used for both the single-mistag
prediction and the double-mistag prediction with appro-
priate weights. The randomly chosen flavor-separator
values must be the same event-by-event and jet-by-jet for
each of the four analyses in this paper in order for the
super discriminant combination method to be consistent.

The distributions of bNN for non-W multijet events
are more difficult to predict because the flavor compo-
sition of the jets in these events is poorly known. The
fraction of each flavor: b, charm, and light-flavored jets
(originating from light quarks or gluons), is estimated by
applying the jet flavor separator to b-tagged jets in the
15 < /ET < 25 GeV sideband of the data. In this sample,
we find a flavor composition of 45% b quark jets, 40% c
quark jets, and 15% light-flavored jets. Each event in the
non-W modeling samples (see Section V B) is randomly
assigned a flavor according to the fraction given above
and then assigned a jet flavor separator value chosen at
random from the appropriate flavor distribution. The
fractions of the non-W events in the signal sample are
uncertain both due to the uncertainties in the sideband
fit and the extrapolation to the signal sample. We take as
an alternative flavor composition estimate 60% b quark
jets, 30% c quark jets, and 10% light-flavored jets, which
is the most b-like possibility of the errors on the flavor
measurement. This alternative flavor composition affects
the shapes of the final discriminant distribution through
the different flavor-separator neural network values.

VII. MULTIVARIATE ANALYSIS

The search for single top quark production and the
measurement of its cross section present substantial ex-
perimental challenges. Compared with the search for tt̄
production, the search for single top quarks suffers from a
lower SM production rate and a larger background. Sin-
gle top quark events are also kinematically more similar
to W+jets events than tt̄ events are, since there is only
one heavy top quark and thus only one W boson in the
single top quark events, while there are two top quarks,
each decaying to Wb, in tt̄ events. The most serious chal-
lenge arises from the systematic uncertainty on the back-
ground prediction, which is approximately three times
the size of the expected signal. Simply counting events
which pass our selection requirements will not yield a
precise measurement of the single top quark cross sec-
tion no matter how much data are accumulated because
the systematic uncertainty on the background is so large.
In fact, in order to have sufficient sensitivity to expect
to observe a signal at the 5 σ level, the systematic uncer-
tainty on the background must be less than one-fifth of
the expected signal rate.

Further separation of the signal from the background is
required. Events that are classified as being more signal-
like are used to test for the presence of single top quark
production and measure the cross section, and events
that are classified as being more background-like improve
our knowledge of the rates of background processes. In
order to optimize our sensitivity, we construct discrimi-
nant functions based on kinematic and b-tag properties
of the events, and we classify the events on a continuous
spectrum that runs from very signal-like for high values
of the discriminants to very background-like for low val-
ues of the discriminants. We fit the distributions of these
discriminants to the background and signal+background
predictions, allowing uncertain parameters to float, as
described in Section IX.

To separate signal events from background events, we
look for features of the events that differ between signal
and background. Events from single top quark produc-
tion have distinctive energy and angular features. The
backgrounds, too, have distinctive features which can be
exploited to help separate them. Many of the variables
we compute for each selected candidate event are moti-
vated by a specific interpretation of the event as a signal
event or a background event. It is not necessary that
all variables used in a discriminant are motivated by the
same interpretation of an event, nor do we rely on the cor-
rectness of the motivation for the interpretation of any
given event. Indeed, each analysis is made more optimal
when it includes a mixture of variables that are based on
different ways to interpret the measured particles in the
events. We optimize our analyses by using variables for
which the distributions are maximally different between
signal events and background events, and for which we
have reliable modeling as verified by the data.

We list below some of the most sensitive variables, and
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explain why they are sensitive in terms of the differences
between the signal and background processes that they
exploit. The three multivariate discriminants, likelihood
funtions, neural networks, and boosted decision trees, use
these variables, or variations of them, as inputs; the anal-
yses also use other variables. The matrix element anal-
ysis uses all of these features implicitly, and it uses bNN

explicitly. Normalized Monte Carlo predictions (“tem-
plates”) and modeling comparisons of these variables are
shown in Figs. 19 and 20.

• M`νb: the invariant mass of the charged lepton,
the neutrino, and the b jet from the top quark
decay. The pz of the neutrino, which cannot be
measured, is inferred by constraining M`ν to the
W boson mass, using the measured charged lepton
candidate’s momentum and setting pν

T =6ET. The
neutrino’s pz is the solution of a quadratic equa-
tion, which may have two real solutions, one real
solution, or two complex solutions. For the case
with two real solutions, the one with the lower |pz|
is chosen. For the complex case, the real part of the
pz solution is chosen. Some analyses use variations
of this variable with different treatment of the un-
measured |pz| of the neutrino. The distribution of
M`νb peaks near mt for signal events, with broader
spectra for background events from different pro-
cesses.

• HT: the scalar sum of the transverse energies of
the jets, the charged lepton, and /ET in the event.
This quantity is much larger for tt̄ events than for
W+jets events; single top quark events populate
the region in between W+jets events and tt̄ events
in this variable.

• Mjj : the invariant dijet mass, which is substan-
tially higher on average for events containing top
quarks than it is for events with W+jets.

• Q × η: the sign of the charge of the lepton times
the pseudorapidity of the light quark jet [81]. Large
Q×η is characteristic of t-channel single top quark
events, because the light quark recoiling from the
single top quark often retains much of the momen-
tum component along the z axis it had before ra-
diating the W boson. It therefore often produces a
jet which is found at high |η|. Multiplying η by the
sign of the lepton’s charge Q improves the separa-
tion power of this variable since 2/3 of single top
quark production in the t-channel is initiated by a
u quark in the proton or a (ū) quark in the antipro-
ton, and the sign of the lepton’s charge determines
the sign of the top quark’s charge and is correlated
with the sign of the η of the recoiling light-flavored
jet. The other 1/3 of single top quark production
is initiated by down-type quarks and has the op-
posite charge-η correlation. W+jets and tt̄ events
lack this correlation, and also have fewer jets pass-

ing our ET requirement at large |η| than the single
top quark signal.

• cos θ`j : the cosine of the angle between the charged
lepton and the light quark jet [20]. For t-channel
events, this tends to be positive because of the V −
A angular dependence of the W boson vertex. This
variable is most powerful when computed in the
rest frame of the top quark.

• bNN: the jet flavor separator described in Sec-
tion VI. This variable is a powerful tool to separate
the signal from W+LF and W+charm events.

• MW
T : the “transverse mass” of the charged lepton

candidate and the ~/ET vector. The transverse mass
is defined to be the invariant mass of the projec-
tions of the three-momentum components in the
plane perpendicular to the beam axis, and is so de-
fined as to be independent of the unmeasured pz

of the neutrino. Events without W bosons in them
(but with fake leptons and mismeasured /ET) have
lower MW

T on average than W+jets events, signal
events, and tt̄ events. Events with two leptonically
decaying W bosons – some diboson and tt̄ events –
have even higher average values of MW

T . The dis-
tribution of MW

T is an important cross-check of the
non-W background rate and shape modeling.

While there are many distinctive features of a single
top quark signal, no single variable is sufficiently sensi-
tive to extract the signal with the present data sample.
We must therefore use techniques that combine the dis-
crimination power of many variables. We use four such
techniques in the W+jets sample, a multivariate likeli-
hood function, a matrix element method, an artificial
neural network, and a boosted decision tree. These are
described in detail in the following sections. Each of
these techniques makes use of the most sensitive vari-
ables described above in different ways, and in combi-
nation with other variables. The measurements using
the separate techniques are highly correlated because the
same events are analyzed with each technique and be-
cause many of the same features are used, but the dif-
ferences between the techniques provide more discrim-
ination power in combination as well as the ability to
cross-check each result with the others separately.

The measured single top quark cross section and the
significance of the result depend on the proper modeling
of the input variable distributions for the signals and the
background processes. We examine the distributions of
all input variables in the selected candidate events, com-
paring the data to the sum of the background and SM
signal predictions, and we also compare the distributions
in a sample of events with no b tags but which pass all
other event selection requirements. The untagged event
sample is much larger than the tagged data sample and
has no overlap with it, providing very precise checks of
the Monte Carlo’s modeling of the data. We do not limit
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FIG. 19: Monte Carlo templates (left) and validation plots (right) comparing data and Monte Carlo for variables with good
discriminating power for events with two identified jets and at least one b tag. The data are indicated with points, and the
shaded histograms show the signal and background predictions which are stacked to form the total prediction. The stacking
order follows that of the legend. Overflows are collected in the highest bin of each histogram.

the investigation to input variables but also check the
distributions of other kinematic variables not used in the
discriminants. We also check the distributions of each
discriminant output variable in events with no b tags.

Each of these investigations is done for each technique,
for 2-jet and 3-jet events separately, and for each category
of charged lepton candidates, requiring the examination
of thousands of histograms.
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FIG. 20: Monte Carlo templates (left) and validation plots (right) comparing data and Monte Carlo for variables with good
discriminating power for events with two identified jets and at least one b tag. The data are indicated with points, and the
shaded histograms show the signal and background predictions which are stacked to form the total prediction. The stacking
order follows that of the legend. Overflows are collected in the highest bin of each histogram.

A. Multivariate Likelihood Function

A multivariate likelihood function (LF) [82] is one
method for combining several sensitive variables. This

method makes use of the relative probabilities of finding
an event in histograms of each input variable, compared
between the signal and the background.

The likelihood function Lk for event class k is con-
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structed using binned probability density functions for
each input variable. The probability that an event from
sample k will populate bin j of input variable i is de-
fined to be fijk . The probabilities are normalized so that
∑

j fijk = 1 for all variables i and all samples k. For the
signal, k = 1, and in this paper, four background classes
are used to construct the likelihood function: Wbb̄, tt̄,
Wcc̄/Wc, and W+LF, which are event classes k = 2, 3,
4, and 5, respectively. Histogram underflows and over-
flows are properly accounted for. The likelihood function
for an event is computed in two steps. First, for each re-
constructed variable i, the bin j in which the event falls
is obtained, and the quantities

pik =
fijk

∑5
m=1 fijm

, (9)

are computed for each variable i and each event class k.
The pik are used to compute

Lk =

∏nvar

i=1 pik
∑5

m=1

∏nvar

i=1 pim

, (10)

where nvar is the number of input variables. The sig-
nal likelihood function, referred to as LF discriminant in
the following, is the one which corresponds to the signal
class of events, L1. This method does not take advan-
tage of the correlations between input variables, which
may be different between the signal and the background
processes. The predicted distributions of the likelihood
functions are made from fully simulated Monte Carlo
and data sets where appropriate, with all correlations in
them, and so while correlations are not taken advantage
of, they are included in the necessary modeling. The
reduced dependence on the correlations makes the LF
analysis an important cross-check on the other analyses,
which make use of the correlations. More detailed infor-
mation on this method can be found in [83] and [84].

Three likelihood functions are computed for use in the
search for single top quark production. The first, Lt, is
optimized for the t-channel signal; it is used for events
with two jets and one b tag. Another, Ls, is optimized
for the s-channel signal; it is applied to events with two
jets and two b tags. The third, L3j , is optimized for the
sum of both s- and t-channel single top quark produc-
tion; it is applied to events with three jets. The inputs
to these three likelihood functions are described in Sec-
tions VII A 2, VII A 3, and VII A 4, respectively.

1. Kinematic Constraints

The likelihood function input variables include the
squares of the quantum-mechanical matrix elements, us-
ing madgraph [49], computed with the measured four-
vectors. These calculations depend very strongly on the
invariant masses of the `ν system and the `νb system,
which result from the W boson and top quark decay, re-
spectively. The neutrino leaves no trace in the detector;

/ET is an approximation to its transverse momentum, and
pν

z is not measured. The b quark is also imperfectly re-
constructed; a b-tagged jet’s energy is an approximation
to the b quark’s momentum. We solve for the pz of the
neutrino and the energy of the b quark while requiring
that M`ν = MW and M`νb = mt. The W boson mass
constraint results in two solutions. If both are real, the
one with the smaller |pz| is used. If both are complex,
a minimal amount of additional /ET is added parallel to
the jet axis assigned to be the b from the top quark’s
decay until a real solution for |pν

z | can be obtained. In
rare cases in which this procedure still fails to produce a
real |pν

z |, additional /ET is added along the b-jet axis to
minimize the imaginary part of |pν

z |, and then a minimal
amount of /ET is added perpendicular to the b-jet axis
until a real |pν

z | is obtained.
The top quark mass constraint can be satisfied by scal-

ing the b-jet’s energy, holding the direction fixed, until
M`νb = mt. As the b-jet’s energy is scaled, the /ET is ad-
justed to be consistent with the change. We then recal-
culate pν

z using the MW constraint described above, and
the process is iterated until M`νb = mt. The resulting
four-vectors of the b quark and the neutrino are then used
with the measured four-vector of the charged lepton in
the matrix element expressions to construct discriminant
variables that separate the signal from the background.

2. 2-Jet t-channel Likelihood Function

The t-channel likelihood function Lt uses seven vari-
ables, and assumes the b-tagged jet comes from top quark
decay. The variables used are:

• HT, the scalar sum of the ET ’s of the two jets, the
lepton ET, and /ET.

• Q × η, the charge of the lepton times the pseudo-
rapidity of the jet which is not b-tagged.

• χ2
kin, the χ2 of the comparison of the measured b

jet energy and the one the kinematic constraints re-
quire in order to make M`νb = mt and M`ν = MW ,
using the nominal uncertainty in the b jet’s energy.
Any additional /ET which is added to satisfy the
m`ν = MW constraint is added to χ2

kin as an addi-
tional term, using the nominal uncertainty in the
/ET measurement.

• cos θ`j , the cosine of the angle between the charged
lepton and the untagged jet in the top quark decay
frame.

• Mjj , the invariant mass of the two jets.

• MEt−chan, the differential cross section for the t-
channel process, as computed by madgraph using
the constrained four-vectors of the b, `, and ν.

• The jet flavor separator output bNN described in
Section VI.
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3. 2-Jet s-channel Likelihood Function

The s-channel likelihood function Ls uses nine vari-
ables. Because these events have exactly two jets, both
of which are required to be b-tagged, we decide which jet
comes from the top quark decay with a separate likeli-
hood function that includes the transverse momentum of
the b quark, the invariant mass of the b quark and the
charged lepton, and the product of the scattering angle
of the b jet in the initial quarks’ rest frame and the lep-
ton charge. To compute this last variable, the pz of the
neutrino has been solved for using the mW constraint.

The variables input to Ls are:

• Mjj , the invariant mass of the two jets.

• pjj
T , the transverse momentum of the two-jet sys-

tem.

• ∆Rjj , the difference between the two jets in φ–η
space.

• M`νb, the invariant mass of the charged lepton, the
neutrino, and the jet assigned to be the b jet from
the top quark decay.

• Ej1
T , the transverse energy of the leading jet, that

is, the jet with the largest ET.

• ηj2 , the pseudorapidity of the non-leading jet.

• p`
T, the transverse momentum of the charged lep-

ton.

• Q×η, the charge of the lepton times the pseudora-
pidity of the jet which is not assigned to have come
from the top quark decay.

• The logarithm of the likelihood ratio constructed
by matrix elements computed by madgraph, us-
ing the pν

z solution which maximizes the likelihood
described in the next point. This likelihood ratio
is defined as MEs+MEt

MEs+MEt+MEW bb
.

• The output of a kinematic fitter which chooses a
solution of pν

z that maximizes the likelihood of the
solution by allowing the values of pν

x and pν
y to vary

within their uncertainties. This likelihood is mul-
tiplied by the likelihood used to choose the b jet
that comes from the top quark, and their product
is used as a discriminating variable.

4. 3-Jet Likelihood Function

Three-jet events have more ambiguity in the assign-
ment of jets to quarks than two-jet events. A jet must be
assigned to be the one originating from the b quark from
top quark decay, and another jet must be assigned to be
the recoiling jet, which is a light-flavored quark in the
t-channel case and a b quark in the s-channel case. In all

there are six possible assignments of jets to quarks not al-
lowing for grouping of jets together. The same procedure
described in Section VII A 1 is used on all six possible jet
assignments. If only one jet is b-tagged, it is assumed
to be the b quark from top quark decay. If two jets are
b-tagged, the jet with the highest − logχ2 + 0.005pT is
chosen, where χ2 is the smaller of the outputs of the
kinematic fitter, one for each pν

z solution. This algorithm
correctly assigns the b jet 75% of the time.

There is still an ambiguity regarding the proper assign-
ment of the other jets. If exactly one of the remaining
jets is b-tagged, it is assumed to be from a b quark, and
the untagged jet assigned to be the t-channel recoiling
jet; otherwise, the jet with larger ET is assigned to be
the t-channel recoiling jet. In all cases, the smaller |pν

z |
solution is used.

The likelihood function L3j is defined with the follow-
ing input variables:

• M`νb, the invariant mass of the charged lepton, the
neutrino, and the jet assigned to be the b jet from
from the top quark decay.

• bNN: the output of the jet-flavor separator.

• The number of b-tagged jets.

• Q × η: the charge of the lepton times the pseu-
dorapidity of the jet assigned to be the t-channel
recoiling jet.

• The smallest ∆R between any two jets, where ∆R
is the distance in the φ–η plane between a pair of
jets.

• The invariant mass of the two jets not assigned to
have come from top quark decay.

• cos θ`j : the cosine of the angle between the charged
lepton and the jet assigned to be the t-channel re-
coiling jet in the top quark’s rest frame.

• The transverse momentum of the lowest-ET jet.

• The pseudorapidity of the reconstructed W boson.

• The transverse momentum of the b jet from top
quark decay.

5. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a likelihood func-
tion is constructed with the input variables described
above. The outputs lie between zero and one, where zero
is background-like and one is signal-like. The predicted
distributions of the signals and the expected background
processes are shown in Fig. 21 for the four b-tag and jet
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categories. The normalized templates are shown sepa-
rately, indicating the separation power for the small sig-
nal, and the sums of predictions normalized to our back-
ground and signal models are compared with the data.
Figure 22(a) corresponds to the sum of all four b-tag and
jet categories.

6. Validation

The distributions of the input variables to each likeli-
hood function are checked in the zero, one, and two-tag
samples for two- and three-jet events. Some of the most
important variables’ validation plots are shown in Sec-
tions V E and VII. The good agreement seen between
the predictions and the observations in both the input
variables and the output variables gives confidence in the
validity of the technique.

Each likelihood function is also tested in the untagged
sample, although the input variables which depend on
b-tagging are modified in order to make the test. For
example, bNN is fixed to −1 for untagged events, Q × η
uses the jet with the largest |η| instead of the untagged
jet, and the taggable jet with the highest ET is used
as the b-tagged jet in variables which use the b-tagged
jet as an input. The modeling of the modified likeli-
hood function in the untagged events is not perfect, as
can be seen in Fig. 22(b). This mismodeling is covered
by the systematic uncertainties on the alpgen model-
ing of W+jets events which constitute the bulk of the
background. Specifically, using the untagged data as the
model for mistagged W+jets events as well as shape un-
certainties on ∆Rjj and ηj2 cover the observed discrep-
ancy.

7. Background Likelihood Functions

Another validation of the Monte Carlo modeling and
the likelihood function discriminant technique is given by
constructing discriminants that treat each background
contribution separately as a signal. These discriminants
then can be used to check the modeling of the rates and
distributions of the likelihood function outputs for each
background in turn by purifying samples of the targeted
backgrounds and separating them from the other compo-
nents. The same procedure of Equation 10 is followed,
except k = 2, 3, 4, or 5, corresponding to the Wbb̄, tt̄,
Wcc̄/Wc, and the W+LF samples, respectively, chang-
ing only the numerator of Equation 10. Each of these

discriminants acts in the same way as the signal discrimi-
nant, but instead it separates one category of background
from the other categories and also from the signals. Dis-
tributions of LW+bottom, Ltt̄, LW+charm, and LW+LF are
shown in Fig. 23 for b-tagged W+2 jet events passing our
event selection. The modeling of the rates and shapes of
these distributions gives us confidence that the individual
background rates are well predicted and that the input
variables to the likelihood function are well modeled for
the main background processes, specifically in the way
that they are used for the signal discriminant.

B. Matrix Element Method

The matrix element (ME) method relies on the eval-
uation of event probabilities for signal and background
processes based on calculations of the relevant SM differ-
ential cross sections. These probabilities are calculated
on an event-by-event basis for the signal and background
hypotheses and quantify how likely it is for the event
to have originated from a given signal or background
process. Rather than combine many complicated vari-
ables, the matrix element method uses only the mea-
sured energy-momentum four-vectors of each particle to
perform its calculation. The mechanics of the method as
it is used here are described below. Further information
about this method can be found in [85].

1. Event Probability

If we could measure the four-vectors of the initial and
final state particles very precisely, the event probability
for a specific process would be

Pevt ∼
dσ

σ
,

where the differential cross-section is given by [7] and

dσ =
(2π)4|M|2

4
√

(q1 · q2)2 − m2
q1

m2
q2

dΦn(q1+q2; p1, .., pn) (11)

where M is the Lorentz-invariant matrix element for the
process under consideration; q1, q2 and mq1

, mq2
are the

four momenta and masses of the incident particles; and
dΦn is the n-body phase space given by [7]:

dΦn(q1 + q2; p1, .., pn) = δ4

(

q1 + q2 −
n
∑

i=1

pi

)

n
∏

i=1

d3pi

(2π)32Ei
. (12)
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FIG. 21: Templates of predictions for the signal and background processes, each scaled to unit area (left) and comparisons
of the data with the sum of the predictions (right) of the likelihood function for each selected data sample. Single top quark
events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the
left-hand sides. The two-jet, one-b-tag plots are shown on a logarithmic vertical scale for clarity, while the others are shown
on a linear scale. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking
order following that of the legend.
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FIG. 22: Comparison of the data with the sum of the predictions of the likelihood function for the sum of all data samples
(left) and for two-jet one-tag events (right) applied to the untagged sideband, the latter with appropriate modifications to
variables that rely on b-tagging. The stacking order follows that of the legend. The discrepancies between the prediction and
the observation in the untagged sideband seen here are covered by systematic uncertainties on the W+jets background model.
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FIG. 23: Distributions of LW+bottom, Ltt̄, LW+charm, and LW+LF for b-tagged W+2 jet events passing our event selection.
The signal and background contributions are normalized to the same predicted rates that are used in the signal extraction
histograms. In each plot, the background process which the discriminant treats as signal is stacked on top of the other
background processes. The stacking orderings follow those of the legends.
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However, several effects have to be considered: (1) the
partons in the initial state cannot be measured, (2) neu-
trinos in the final state are not measured directly, and
(3) the energy resolution of the detector cannot be ig-
nored. To address the first point, the differential cross
section is weighted by parton distribution functions. To
address the second and third points, we integrate over
all particle momenta which we do not measure (the mo-
mentum of the neutrino), or do not measure well, due to

resolution effects (the jet energies). The integration gives
a weighted sum over all possible parton-level variables y
leading to the observed set of variables x measured with
the CDF detector. The mapping between the particle
variables y and the measured variables x is established
with the transfer function W (y, x), which encodes the
detector resolution and is described in Section VII B 2.
Thus, the event probability takes the form

P (x) =
1

σ

∫

dσ(y)dq1dq2f (|qz
1/pbeam|) f (|qz

2/pbeam|) W (y, x), (13)

where dσ(y) is the differential cross section in terms of
the particle variables; f (qz

i /pbeam) are the PDFs, which
are functions of the fraction of the proton momentum
pbeam carried by quark i. The initial quark momentum

is assumed to be in the direction of the beam axis for
purposes of this calculation. Substituting Equations 11
and 12 into Equation 13 transforms the event probability
to

P (x) =
1

σ

∫

2π4|M|2 f (Eq1
/Ebeam)

Eq1

f (Eq2
/Ebeam)

Eq2

W (y, x)dΦ4dEq1
dEq2

, (14)

where we have used the approximation
√

(q1 · q2)2 − m2
q1

m2
q2

' 2Eq1
Eq2

, neglecting the

masses and transverse momenta of the initial partons.

We calculate the squared matrix element |M|2 for the
event probability at LO by using the helas (HELic-
ity Amplitude Subroutines for Feynman Diagram Eval-
uations) package [86]. The correct subroutine calls for
a given process are automatically generated by mad-

graph [49]. We calculate event probabilities for all sig-
nificant signal and background processes that can be eas-
ily modeled to first order: s-channel and t-channel single
top quark production as well as the Wbb̄, Wcg, Wgg
(shown in Fig. 8) and tt̄ (Fig. 9) processes. The Wcg
and Wgg processes are only calculated for two-jet events
because they have very little contribution to three-jet
background.

The matrix elements correspond to fixed-order tree-
level calculations and thus are not perfect representations
of the probabilities for each process. Since the integrated
matrix elements are not interpreted as probabilities but
instead are used to form functions that seprate signal
events from background events, the choice of the matrix
element calcultion affects the sensitivity of the analysis

but not its accuracy. The fully simulated Monte Carlo
uses parton showers to approximate higher-order effects
on kinematic distributions, and systematic uncertainties
are applied to the Monte Carlo modeling in this analysis
in the same way as for the other analyses.

While the matrix-element analysis does not directly
use input variables that are designed to separate signals
from backgrounds based on specific kinematic properties
such as M`νb, the information carried by these recon-
structed variables is represented in the matrix element
probabilities. For M`νb in particular, the pole in the top
quark propagator in M provides sensitivity to this recon-
structed quantity. While the other multivariate analyses
use the best-fit kinematics corresponding to the measured
quantities on each event, the matrix element analysis, by
integrating over the unknown parton momenta, extracts
more information, also using the measurement uncertain-
ties.

2. Transfer Functions

The transfer function, W (y, x), is the probability of
measuring the set of observable variables x given specific
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values of the parton variables y. In the case of well-
measured quantities, W (y, x) is taken as a δ-function
(i.e. the measured momenta are used in the differential
cross section calculation). When the detector resolution
cannot be ignored, W (y, x) is a parameterized resolution
function based on fully simulated Monte Carlo events.
For unmeasured quantities, such as the three components
of the momentum of the neutrino, the transfer function
is constant. Including a transfer function between the

neutrino’s transverse momentum and ~/ET would double-
count the transverse momentum sum constraint. The
choice of transfer function affects the sensitivity of the
analysis but not its accuracy, since the same transfer
function is applied to both the data and the Monte Carlo
samples.

The energies of charged leptons are relatively well mea-
sured with the CDF detector and we assume δ-functions
for their transfer functions. The angular resolution of
the calorimeter and the muon chambers is also good and
we assume δ-functions for the transfer functions of the
charged lepton and jet directions. The resolution of jet
energies, however, is broad and it is described by a trans-
fer function Wjet(Eparton, Ejet).

The jet energy transfer functions map parton energies
to measured jet energies after correction for instrumental
detector effects [48]. This mapping includes effects of ra-
diation, hadronization, measurement resolution, and en-
ergy outside the jet cone not included in the reconstruc-
tion algorithm. The jet transfer functions are obtained by
parameterizing the jet response in fully simulated Monte
Carlo events. We parameterize the distribution of the
difference between the parton and jet energies as a sum
of two Gaussian functions: one to account for the sharp
peak and one to account for the asymmetric tail. We
determine the parameters of the Wjet(Eparton, Ejet) by
performing a maximum likelihood fit to jets in events
passing the selection requirements. The jets are required
to be aligned within a cone of ∆R < 0.4 with a quark or
a gluon coming from the hard scattering process.

We create three transfer functions: one for b jets, which
is constructed from the b quark from top quark decay in
s-channel single top quark events; one for light jets, which
is constructed from the light quark in t-channel single top
quark events; and one for gluons, which is constructed
from the radiated gluon in Wcg events. In each process,
the appropriate transfer function is used for each final-
state parton.

3. Integration

To account for poorly measured variables, the differen-
tial cross section must be integrated over all variables —
14 variables for two-jet events, corresponding to the mo-
mentum vectors of the four final-state particles (12 vari-
ables) and the longitudinal momenta of the initial state
partons (2 variables). There are 11 delta functions in-
side the integrals: four for total energy and momentum

conservation and seven in the transfer functions (three
for the charged lepton’s momentum vector and four for
the jet angles). The calculation of the event probability
therefore involves a three-dimensional integration. The
integration is performed numerically over the energy of
the two quarks and the longitudinal momentum of the
neutrino (pν

z ). For three-jet events, the additional jet
adds one more dimension to the integral.

Because it is not possible to tell which parton resulted
in a given jet, we try all possible parton combinations,
using the b-tagging information when possible. These
probabilities are then added together to create the final
event probability.

Careful consideration must be given to tt̄ events falling
into the W + 2 jet and W + 3 jet samples because these
events have final-state particles that are not observed. In
two-jet events, these missing particles could be a charged
lepton and a neutrino (in the case of tt̄ → `+ν``

′−ν̄`′bb̄
decays) or two quarks (in the case of tt̄ → `+ν`qq̄

′bb̄ de-
cays), and since both of these are decay products of a
W boson, we treat this matrix element in either case as
having a final-state W boson that is missed in the detec-
tor. The particle assignment is not always correct, but
the purpose of the calculation is to construct variables
that have maximal separation power between signal and
background events, and not that they produce a correct
assignment of particles in each event. The choice of which
particles are assumed to have been missed is an issue of
the optimization of the analysis and not of the validity
of the result. We integrate over the three components of
the hypothetical missing W boson’s momentum, result-
ing in a six-dimensional integral. In the three-jet case,
we integrate over the momenta of one of the quarks from
the W boson decay.

The numerical integration for the simpler two-jet s-
and t-channel and Wbb̄ diagrams is performed using
an adaptation of the CERNLIB routine radmul [87].
This is a deterministic adaptive quadrature method that
performs well for smaller integrations. For the higher-
dimensional integrations needed for the three-jet and
tt̄ matrix elements, a faster integrator is needed. We
use the divonne algorithm implemented in the cuba li-
brary [88], which uses a Monte-Carlo-based technique of
stratified sampling over quasi-random numbers to pro-
duce its answer.

4. Event Probability Discriminant

Event probabilities for all processes are calculated for
each event for both data events and Monte Carlo simu-
lated events. For each event, we use the event probabili-
ties as ingredients to build an event probability discrim-
inant (EPD), a variable for which the distributions of
signal events and background events are as different as
possible. Motivated by the Neyman-Pearson lemma [89],
which states that a likelihood ratio is the most sensitive
variable for separating hypotheses, we define the EPD to
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be EPD = Ps/(Ps + Pb), where Ps and Pb are estimates
of the signal and background probabilities, respectively.
This discriminant is close to zero if Pb � Ps and close to
unity if Ps � Pb. There are four EPD functions in all,
for W+two- or three-jet events with one or two b tags.

Several background processes in this analysis have no
b jet in the final state, and the matrix element probabili-

ties do not include detector-level discrimination between
b jets and non-b jets. In order to include this extra infor-
mation, we define the b-jet probability as b = (bNN+1)/2
and use it to weight each matrix element probability by
the b flavor probability of its jets. Since single top quark
production always has a b quark in the final state, we
write the event-probability-discriminant as:

EPD =
b · Ps

b · (Ps + PWbb̄ + Ptt̄) + (1 − b) · (PWcc̄ + PWcg + PWgg)
(15)

where Ps = Ps−channel + Pt−channel. Each probability is
multiplied by an arbitrary normalization factor, which is
chosen to maximize the expected sensitivity. Different
values are chosen in each b-tag and jet category in order
to maximize the sensitivity separately in each. The re-
sulting templates and distributions are shown for all four
EPD functions in their respective selected data samples
in Fig. 24. All of them provide good separation between
single top quark events and background events. Fig-
ure 25(a) corresponds to the sum of all four b-tag and
jet categories.

5. Validation

We validate the performance of the Monte Carlo to
predict the distribution of each EPD by checking the
untagged W+jets control samples, setting bNN = 0.5 so
that it does not affect the EPD. An example is shown in
Fig. 25(b), for W+two-jet events. The agreement in this
control sample gives us confidence that the information
used in this analysis is well modeled by the Monte Carlo
simulation.

Because the tt̄ background is the most signal-like of
the background contributions in this analysis, the ma-
trix element distribution is specifically checked in the b-
tagged four-jet control sample, which is highly enriched
in tt̄ events. Each EPD function is validated in this way,
for two or three jets, and one or two b tags, using the
highest-ET jets in W+four-jet events with the appropri-
ate number of b tags. An example is shown in Fig. 26,
for the two-jet one-b-tag EPD function.

C. Artificial Neural Network

A different approach uses artificial neural networks
(NN) to combine sensitive variables to distinguish sin-
gle top quark signal from background events. As with
the neural network flavor separator bNN described in Sec-
tion VI, the NeuroBayes [80] package is used to create
the neural networks. We train a different neural network

in each selected data sample – indexed by the number
of jets, the number of b-tagged jets, and whether the
charged lepton candidate is a triggered lepton or an EMC
lepton. For all samples, the t-channel Monte Carlo is
used as the signal training sample except for the two-jet
two-b-tag events, in which s-channel events are treated
as signal. The background training sample is a mix of
Standard Model processes in the ratios of the estimated
yields given in Tables I and II.

Each training starts with more than fifty variables, but
the training procedure removes those with no significant
discriminating power, reducing the number to 11–18 vari-
ables. Each neural network has one hidden layer of 15
nodes and one output node.

As in other cases, the transverse momentum of the
neutrino is inferred from the /ET of the event. The com-
ponent of the momentum of the neutrino along the beam
axis is calculated from the assumed mass of the W boson
and the measured energy and momentum of the charged
lepton. A quadratic equation in pν

z must be solved. If
there is one real solution, we use it. If there are two real
solutions, we use the one with the smaller |pν

z |. If the
two solutions are complex, a kinematic fit which varies

the transverse components of ~/ET is performed to find a

solution as close as possible to ~/ET [90] which results in
a real pν

z .
If only one jet is b-tagged, it is assumed to be from

top quark decay. If there is more than one b-tagged jet,
the jet with the largest Q` × η is chosen. More detailed
information about this method can be found in [59].

1. Input Variables

The variables used in each network are summarized in
Table III. Descriptions of the variables follow.

• M`νb: The reconstructed top quark mass.

• M`νbb: The reconstructed mass of the charged lep-
ton, the neutrino, and the two b-tagged jets in the
event.
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FIG. 24: Templates of predictions for the signal and background processes, each scaled to unit area (left) and comparisons of
the data with the sum of the predictions (right) of the ME discriminant EPD for each selected data sample. Single top quark
events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the
left-hand sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking
order following that of the legend.
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FIG. 25: Comparison of the data with the sum of the predictions of the matrix element discriminant for the sum of all data
samples (left). The discriminant output for two-jet one-b-tag events applied to the untagged W+two jets control sample (right)
shows that the Monte Carlo W+two jets samples model the ME distribution of the data well. The data are indicated by points
with error bars, and the predictions are shown stacked, with the stacking order following that of the legend.
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FIG. 26: The event probability discriminant for two-jet one-
b-tag events applied to the b-tagged W+four jets control sam-
ple, showing that the Monte Carlo tt̄ samples model the EPD
distribution of the data well. The data are indicated by points
with error bars, and the predictions are shown stacked, with
the stacking order following that of the legend.

• M `νb
T : The transverse mass of the reconstructed top

quark.

• Mjj : The invariant mass of the two jets. In the
three-jet networks, all combinations of jets are in-
cluded as variables.

• MW
T : The transverse mass of the reconstructed W

boson.

• E
btop
T : The transverse energy of the b quark from

top decay.

• Ebother

T : The transverse energy of the b quark not
from top decay.

• ∑Ejj
T : The sum of the transverse energies of the

two most energetic jets. In the three-jet one-tag
network, all combinations of two jets are used to
construct separate

∑

Ejj
T input variables.

• Elight
T : The transverse energy of the untagged or

lowest-energy jet.

• p`
T: The transverse momentum of the charged lep-

ton.

• p`νjj
T : The magnitude of the vector sum of the

transverse momentum of the charged lepton, the
neutrino, and all the jets in the event.

• HT: The scalar sum of the transverse energies of
the charged lepton, the neutrino, and all the jets in
the event.

• /ET: The missing transverse energy.

• /ET,sig: The significance of the missing transverse

energy /ET, as defined in Equation 4.

• cos θ`j : The cosine of the angle between the charged
lepton and the untagged or lowest-energy jet in the
top quark’s reference frame.

• cos θW
`W : The cosine of the angle between the

charged lepton and the reconstructed W boson in
the W boson’s reference frame.

• cos θt
`W : The cosine of the angle between the

charged lepton and the reconstructed W boson in
the top quark’s reference frame.

• cos θt
jj : The cosine of the angle between the two

most energetic jets in the top quark’s reference
frame.
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TABLE III: Summary of variables used in the different neural
networks in this analysis. An explanation of the variables is
given in the text.

2-jet 3-jet

Variable 1-tag 2-tag 1-tag 2-tag

M`νb X X X

M`νbb X X

M `νb
T X X X X

Mjj X X X X

MW
T X X

E
btop
T X X

Ebother

T X
∑

Ejj

T X X

Elight

T X X

p`
T X

p`νjj

T X X

HT X X

/ET X

/ET,sig X

cos θ`j X X X

cos θW
`W X

cos θt
`W X

cos θt
jj X X

Q × η X X X

η` X

ηW X X
∑

ηj X X

∆ηjj X X

∆ηt,light X√
ŝ X

Centrality X

Jet flavor separator X X X

• Q × η: The charge of the lepton multiplied by the
pseudorapidity of the untagged jet.

• η`: The pseudorapidity of the charged lepton.

• ηW : The pseudorapidity of the reconstructed W
boson.

•
∑

ηj : The sum of the pseudorapidities of all jets.

• ∆ηjj : The difference in pseudorapidity of the two
most energetic jets. In the three-jet two-tag net-
work, the difference between the two least energetic
jets is also used.

• ∆ηt,light: The difference in pseudorapidity between
the untagged or lowest-energy jet and the recon-
structed top quark.

•
√

ŝ: The energy of the center-of-mass system of the
hard interaction, defined as the `νb system plus the
recoiling jet.

• Centrality: The sum of the transverse energies of
the two leading jets divided by

√
ŝ.

• bNN: The jet flavor separator neural network out-
put described in Section VI. For two-tag events,
the sum of the two outputs is used.

2. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a neural network
is constructed with the input variables described above.
The outputs lie between −1.0 and +1.0, where −1.0 is
background-like and +1.0 is signal-like. The predicted
distributions of the signals and the expected background
processes are shown in Fig. 27 for the four b-tag and jet
categories. The normalized templates are shown sepa-
rately, indicating the separation power for the small sig-
nal, and the sums of predictions normalized to our back-
ground and signal models are compared with the data.
Figure 28(a) corresponds to the sum of all four b-tag and
jet categories.

3. Validation

The distributions of the input variables to each neu-
ral network are checked in the zero, one, and two-tag
samples for two- and three-jet events. Comparisons of
the observed and predicted distributions of some of the
variables which confer the most sensitivity are shown in
Sections V E and VII. The good agreement seen between
the predictions and the observations in both the input
variables and the output variables gives us confidence
in the Monte Carlo modeling of the output discriminant
distributions.

We validate the performance of each network by check-
ing it in the untagged sideband, appropriately modifying
variables that depend on tagging information. An exam-
ple is shown in Fig. 28(b). The agreement in this side-
band gives us confidence that the information used in this
analysis is well modeled by the Monte Carlo simulation.

4. High NN Discriminant Output

To achieve confidence in the quality of the signal con-
tribution in the highly signal-enriched region of the NN
discriminant, further studies have been conducted. By
requiring a NN discriminant output above 0.4 in the event
sample with 2 jets and 1 b tag, a signal-to-background
ratio of about 1:3 is achieved. This subsample of signal
candidates is expected to be highly enriched with sig-
nal candidates and is simultaneously sufficient in size to
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FIG. 27: Templates of predictions for the signal and background processes, each scaled to unit area (left) and comparisons of
the data with the sum of the predictions (right) of the neural network output for each signal region. Single top quark events
are predominantly found on the right-hand sides of the histograms while background events are mostly found on the left-hand
sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following
that of the legend.
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FIG. 28: Comparison of the data with the sum of the predictions of the neural network output for the sum of all signal
regions (left) and the neural network output for two-jet one-b-tag events applied to the untagged control sample, showing close
modeling of the data and good control over the W+light-flavor shape. The data are indicated by points with error bars, and
the predictions are shown stacked, with the stacking order following that of the legend.

check the Monte Carlo modeling of the data. We com-
pare the expectations of the signal and background pro-
cesses to the observed data of this subsample in various
highly discriminating variables. The agreement is good,
as is shown, for example, for the invariant mass of the
charged lepton, the neutrino, and the b-tagged jet M`νb in
Fig. 29(a). Since only very signal-like background events
are within this subsample, the background shapes are
very similar to the signal shapes. This is because the
M`νb is one of the most important input variables of the
NN discriminant, leading to a signal-like sculpted shape
for background events in this subsample. As a conse-
quence, the shape of this distribution does not carry in-
formation as to whether a signal is present or absent.

To overcome the similar shapes of signal and back-
ground events in the signal-enriched subsample, a special
neural network discriminant (NN′) is constructed in ex-
actly the same way as the original, but without M`νb as
an input. Since M`νb is highly correlated with other orig-
inal neural network input variables, such as M `νb

T (with
a correlation coefficient of 65%), HT (45%), and Mjj

(24%), these variables are also omitted for the training of
the special NN′ discriminant. Despite the loss of discrimi-
nation through the removal of some very important input
variables, the NN′ discriminant is still powerful enough
to enrich a subsample of events with signal. With the
requirement NN′ > 0.4, the signal-to-background ratio is
somewhat reduced compared with that of the original NN
discriminant. The benefit of this selection is that the pre-
dicted distributions of the signal and background are now
more different from each other. We predict that back-
ground events are dominant at lower values of M`νb while
the single top quark signal is concentrated around the re-
constructed top quark mass of 175 GeV/c2, as shown in
Fig. 29(b). Because of the more distinct shapes of the

signal and background expectations, the observed shape
of the in data distribution is no longer explicable by the
background prediction alone; a substantial amount of sig-
nal events is needed to describe the observed distribution.
The NN′ network is used only for this cross-check; it is
not included in the main results of this paper.

D. Boosted Decision Tree

A decision tree classifies events with a series of binary
choices; each choice is based on a single variable. Each
node in the tree splits the sample into two subsamples,
and a decision tree is built using those two subsamples,
continuing until the number of events used to predict
the signal and background in a node drops below a set
minimum. In constructing a tree, the cut in each node
is adjusted to provide optimal separation between signal
and background events. The same variable may be used
in multiple nodes, and some variables may not be used
at all. This procedure results in a series of final nodes
with maximally different signal-to-background ratios.

Decision trees allow many input variables to be com-
bined into a single output variable with powerful discrim-
ination between signal and background. Additionally,
decision trees are insensitive to the inclusion of poorly
discriminating input variables because the training al-
gorithm will not use non-discriminating variables when
constructing its nodes. In this analysis, we train a differ-
ent boosted decision tree (BDT) in each data sample. We
use the TMVA [91] package to perform this analysis [92].
The boosting procedure is described below.

The criterion used to choose the variable to cut on for
each node and to set the value of the cut is to optimize the
Gini index [93] p(1−p) = sb/(s+b)2, where p = s/(s+b)
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FIG. 29: Comparison of the predictions and the data for M`νb for events with an output above 0.4 of the original NN (left)
and a specially trained NN′ (right) discriminant. The data are indicated by points with error bars, and the predictions are
shown stacked, with the stacking order following that of the legend.

is the purity and s and b are the number of signal and
background events in the node, respectively.

A shortcoming of decision trees is their instability with
respect to statistical fluctuations in the training sample
from which the tree structure is derived. For example,
if two input variables exhibit similar separation power,
a fluctuation in the training sample may cause the al-
gorithm to decide to cut on one variable early in the
decision chain, while a slightly different training sample
may result in a tree which uses the other variable in its
place, resulting in a substantially different tree.

This problem is overcome by a boosting [94] procedure
that extends this concept from one tree to several trees
which form a “forest” of decision trees. The trees are
derived from the same training ensemble by reweighting
events, and are finally combined into a single classifier
which is given by a weighted average of the individual
decision trees. Boosting stabilizes the response of the de-
cision trees with respect to fluctuations in the training
sample and is able to considerably enhance the perfor-
mance with respect to a single tree.

This analysis uses the adaboost [94] (adaptive boost)
algorithm, in which the events that were misclassified in
one tree are multiplied by a common boost weight α in
the training of the next tree. The boost weight is derived
from the fraction of misclassified events, r, of the previous
tree,

α =
1 − r

r
. (16)

The resulting event classification yBDT(x) for the
boosted tree is given by

yBDT(x) =
∑

i∈forest

ln(αi) · hi(x), (17)

where the sum is over all trees in the forest. Large (small)
values of yBDT(x) indicate a signal-like (background-like)

event. The result hi(x) of an individual tree can either be
defined to be +1 (−1) for events ending up in a signal-like
(background-like) leaf node according to the majority of
training events in that leaf, or hi(x) can be defined as the
purity of the leaf node in which the event is found. We
found that the latter option performs better for single-
tag samples, while the double tag samples–which have
fewer events–perform better when trained with the for-
mer option.

While non-overlapping samples of Monte Carlo events
are used to train the trees and to produce predictions of
the distributions of their outputs, there is the possibility
of “over-training” the trees. If insufficient Monte Carlo
events are classified in a node of a tree, then the train-
ing procedure can falsely optimize to separate the few
events it has in the training sample and perform worse
on a statistically independent testing sample. In order
to remove statistically insignificant nodes from each tree
we employ the cost complexity [95] pruning algorithm.
Pruning is the process of cutting back a tree from the
bottom up after it has been built to its maximum size.
Its purpose is to remove statistically insignificant nodes
and thus reduce the over-training of the tree.

The background processes included in the training are
tt̄ and Wbb̄ for double-b-tag channels, and those as well as
Wc and W+LF for the single-b-tag channels. Including
the non-dominant background processes is not found to
significantly increase the performance of the analysis.

1. Distributions

In each data sample, distinguished by the number of
identified jets and the number of b tags, a BDT is con-
structed with the input variables described above. The
output for each event lies between −1.0 and 1.0, where
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−1.0 indicates the event has properties that make it ap-
pear much more to be a background event than a signal
event, and 1.0 indicates the event appears much more
likely to have come from a single top signal. The pre-
dicted distributions of the signals and the expected back-
ground processes are shown in Fig. 30 for the four b-tag
and jet categories. The normalized templates are shown
separately, indicating the separation power for the small
signal, and the sums of predictions normalized to our
background and signal models are compared with the
data. Figure 31(a) corresponds to the sum of all four
b-tag and jet categories.

2. Validation

The distributions of the input variables to each BDT
are checked in the zero, one, and two b-tag samples for
two- and three-jet events, and also in the four-jet sample
containing events with at least one b tag. Some of the
most important variables’ validation plots are shown in
Sections V E and VII. The good agreement seen between
the predictions and the observations in both the input
variables and the output variables gives us confidence
in the Monte Carlo modeling of the distributions of the
discriminant outputs.

We validate the modeling of the backgrounds in each
boosted tree by checking it in the sample of events with
no b tags, separately for events with two and three jets.
For variables depending on b-tagging information like
M`νb and Q × η, the leading jet is chosen as the “b-
tagged” jet, and for the bNN variable the output value
is randomly taken from a W+LF template. An example
is shown in Fig. 31(b), which shows the two-jet, one b-
tag BDT tested with the two-jet, zero b-tag sample. The
dominant source of background tested in Fig. 31(b) is
W+LF, and the alpgen Monte Carlo predicts the BDT
output very well. We further test the four-jet sample with
one or more b-tags, shown in Fig. 32, taking the leading
two jets to test the two-jet, one b-tag BDT. The domi-
nant background in this test is tt̄, and the good modeling
of the distribution of the output of the BDT by pythia

raises our confidence that this background, too, is mod-
eled well in the data samples.

VIII. SYSTEMATIC UNCERTAINTIES

The search for single top quark production and the
measurement of the cross section require substantial in-
put from theoretical models, Monte Carlo simulations,
and extrapolations from control samples in data. We as-
sign systematic uncertainties to our predictions and in-
clude the effects of these uncertainties on the measured
cross sections as well as the significance of the signal.

We consider three categories of systematic uncertainty:
uncertainty in the predicted rates of the signal and back-
ground processes, uncertainty in the shapes of the dis-

tributions of the discriminant variables, and uncertainty
arising from the limited number of Monte Carlo events
used to predict the signal and background expectations in
each bin of each discriminant distribution. Sources of un-
certainty may affect multiple signal and background com-
ponents. The effects of systematic uncertainty from the
same source are considered to be fully correlated. For ex-
ample, the integrated luminosity estimate affects the pre-
dictions of the Monte-Carlo based background processes
and the signal, so the uncertainty on the integrated lu-
minosity affects all of these processes in a correlated way.
The effects of different sources of systematic uncertainty
are considered to be uncorrelated.

The effects of all systematic uncertainties are included
in the hypothesis tests and cross section measurements
performed by each analysis, as described in Section IX.
Detailed descriptions of the sources of uncertainty and
their estimation are given below.

A. Rate Uncertainties

Rate uncertainties affect the expected contributions of
the signal and background samples. Some sources have
asymmetric uncertainties. All rate uncertainties are as-
signed truncated Gaussian priors, where the truncation
prevents predictions from being negative for any source
of signal or background. The sources of rate uncertainties
in this analysis are described below, and their impacts on
the signal and background predictions are summarized in
Table IV.

• Integrated Luminosity: A symmetric uncer-
tainty of ±6% is applied to all Monte-Carlo based
predictions. This uncertainty includes the uncer-
tainty in the pp̄ inelastic cross section as well as
the uncertainty in the acceptance of CDF’s lumi-
nosity monitor [43]. The requirement that the pri-
mary vertex position in z is within ±60 cm of the
origin causes a small acceptance uncertainty that
is included as well.

• Theoretical Cross Sections: Our MC-based
background processes are scaled to theoretical pre-
dictions at NLO (or better). We apply the associ-
ated theoretical uncertainties. We separate out the
effects of the top quark mass from the other sources
of uncertainty affecting the theoretical predictions.
Not every theoretical cross section uncertainty is
used in each result; details are given in Section IX.

• Monte Carlo Generator: Different Monte Carlo
generators for the signal result in different accep-
tances. The deviations are small but are still in-
cluded as a rate uncertainty on the signal expecta-
tion as described in Section IV.

• Acceptance and Efficiency Scale Factors: The
predicted rates of the Monte Carlo background pro-
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FIG. 30: Templates of predictions for the signal and background processes, each scaled to unit area (left) and comparisons of
the data with the sum of the predictions (right) of the boosted decision tree output for each data sample. Single top quark
events are predominantly found on the right-hand sides of the histograms while background events are mostly found on the
left-hand sides. The data are indicated by points with error bars, and the predictions are shown stacked, with the stacking
order following that of the legend.
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FIG. 31: Comparison of the data with the sum of the predictions of the BDT output for the sum of all selected data samples
(left) and the BDT output for two-jet one-b-tag events applied to the untagged two-jet control sample (right), where the
dominant contributing process is W+light-flavored jets. The data are indicated by points with error bars, and the predictions
are shown stacked, with the stacking order following that of the legend.
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FIG. 32: The BDT output for four-jet events containing one
or more b tags. The dominant source of background is tt̄
events. The data are indicated with points and the stacked
histograms show the prediction, scaled to the total data rate,
with the stacking order following that of the legend.

cesses and of the signals are affected by trigger ef-
ficiency, mismodeling of the lepton identification
probability, and the b-tagging efficiency. Known
differences between the data and the simulation are
corrected for by scaling the prediction, and uncer-
tainties on these scale factors are collected together
in one source of uncertainty since they affect the
predictions in the same way.

• Heavy Flavor Fraction in W+jets: The pre-
diction of the Wbb̄, Wcc̄, and Wc fractions in the
W + 2 jets and W + 3 jets samples are extrapo-
lated from the W + 1 jet sample as described in
Section V. It is found that alpgen underpredicts

the Wbb̄ and Wcc̄ fractions in the W + 1 jet sam-
ple by a factor of 1.4 ± 0.4. We assume that the
Wbb̄ and Wcc̄ predictions are correlated. The un-
certainty on this scale factor comes from the spread
in the measured heavy-flavor fractions using differ-
ent variables to fit the data, and in the difference
between the Wbb̄ and Wcc̄ scale factors. The Wc
prediction from alpgen is compared with CDF’s
measurement [78] and is found not to require scal-
ing, but a separate, uncorrelated uncertainty is as-
signed to the Wc prediction, with the same relative
magnitude as the Wbb̄+Wcc̄ uncertainty.

• Mistag Estimate: The method for estimating the
yield of events with incorrectly b-tagged events is
described in Section V D. The largest source of
systematic uncertainty in this estimate comes from
extrapolating from the negative tag rate in the data
to positive tags by estimating the asymmetry be-
tween positive light-flavor tags and negative light-
flavor tags. Other sources of uncertainty come from
differences in the negative tag rates of different data
samples used to construct the mistag matrix.

• Non-W Multijet Estimate: The Non-W rate
prediction varies when the /ET distribution is con-
structed with a different number of bins or if differ-
ent models are used for the Non-W templates. The
/ET fits also suffer from small data samples, par-
ticularly in the double-tagged samples. A relative
uncertainty of ±40% is assesed on all Non-W rate
predictions.

• Initial State Radiation (ISR): The model
used for ISR is pythia’s “backwards evolution”
method [51]. This uncertainty is evaluated by gen-
erating new Monte Carlo samples for tt̄ and single
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top quark signals with ΛQCD doubled or divided in
half, to generate samples with more ISR and less
ISR, respectively. Simultaneously, the initial trans-
verse momentum scale is multiplied by four or di-
vided by four, and the hard scattering scale of the
shower is multiplied by four or divided by four, for
more ISR and less ISR, respectively. These vari-
ations are chosen by comparing Drell-Yan Monte
Carlo and data samples. The pT distributions of
dileptons are compared as a function of the dilepton
invariant mass, and the ISR more/less prescriptions
generously bracket the available data [96]. Since
the ISR prediction must be extrapolated from the
Z mass scale to the higher-Q2 scales of tt̄ and sin-
gle top quark events, the variation chosen is much
more than is needed to bracket the pZ

T data.

• Final State Radiation (FSR): pythia’s model
of gluon radiation from partons emitted from the
hard-scattering interaction has been tuned with
high precision to LEP data [51]. Nonetheless, un-
certainty remains in the radiation from beam rem-
nants, and parameters analogous to those adjusted
for ISR are adjusted in pythia for the final-state
showering, except for the hard-scattering scale pa-
rameter. The effects of variations in ISR and FSR
are treated as 100% correlated with each other.
ISR and FSR rate uncertainties are not evaluated
for the W+jets Monte Carlo samples because the
rates are scaled to data-driven estimates with asso-
ciated uncertainties, and the kinematic shapes of all
predictions have factorization and renormalization
scale uncertainties applied, as discussed below.

• Jet Energy Scale (JES): The calibration of the
calorimeter response to jets is a multi-step pro-
cess, and each step involves an uncertainty which is
propagated to the final jet-energy scale [48]. Raw
measurements of the jet energies are corrected ac-
cording to test beam calibrations, detector non-
uniformity, multiple interactions, and energy that
is not assigned to the jet because it lies outside of
the jet cone. The uncertainties in the jet energy
scale are incorporated by processing all events in
all Monte Carlo samples with the jet energy scale
varied upwards and again downwards. The kine-
matic properties of each event are affected, and
some events are re-categorized as having a differ-
ent number of jets as jets change their ET inducing
correlated rate and shape uncertainties. An exam-
ple of the shape uncertainty to the NN analysis’s
discriminant is shown in Fig. 33.

• Parton Distribution Functions (PDF): The
PDFs used in this analysis are the CTEQ5L set of
leading-order PDFs [50]. To evaluate the system-
atic uncertainties on the rates due to uncertainties
in these PDFs, we add in quadrature the differ-
ences between the predictions of the following pairs
of PDFs:
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FIG. 33: An example of systematically shifted shape tem-
plates. This figure shows the jet energy scale shifted his-
tograms for the single top quark signal in two-jet one-b-tag
events for the NN discriminant. The plot below shows the
relative difference between the central shape and the two al-
ternate shapes.

– CTEQ5L and MRST72 [97], PDF sets com-
puted by different groups. MRST72 is also a
leading-order PDF set.

– MRST72 and MRST75, which differ in their
value of αs. The former uses 0.1125; the latter
uses 0.1175.

– CTEQ6L and CTEQ6L1, of which the former
has a 1-loop αs correction, and the latter has
a 2-loop αs correction.

– The 20 signed eigenvectors of CTEQ6M, each
compared with the default CTEQ5L PDFs.

The PDF uncertainty induces a correlated rate and
shape uncertainty in the applicable templates.

B. Shape-Only Uncertainties

Many of the sources of rate uncertainty listed above
also induce distortions in the shapes of the templates for
the signals and background processes used to model the
data. These include ISR, FSR, JES, and PDF uncertain-
ties. Here we list the sources of shape uncertainties which
do not have associated rate uncertainties.

Shape uncertainty templates are all smoothed with a
median smoothing algorithm. This procedure takes the
ratio of the systematically shifted histograms to the cen-
tral histograms and replaces the contents of each bin with
the median of the ratios of a five-bin window around the
bin. The first two bins and the last two bins are left unaf-
fected by this procedure. The five-bin window was chosen
as the minimum size that provides adequate smoothing,
as judged from many shape variation ratio histograms.
The smoothed ratio histograms are then multiplied by
the central histograms to obtain the new varied template
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histograms. This procedure reduces the impact of lim-
ited Monte Carlo statistics in the bins of the central and
varied templates.

• Jet Flavor Separator Modeling: The distribu-
tion of bNN for light-flavor jets is found to require
a small correction, as described in Section VI. The
full difference between the uncorrected light-flavor
Monte Carlo prediction and the data-derived cor-
rected distribution is taken as a one-sided system-
atic uncertainty. Since a pure sample of charm jets
is not available in the data, a systematic uncer-
tainty is also assessed on the shape of the charm
prediction, taking the difference between the dis-
tribution predicted by the Monte Carlo simulation
and the Monte Carlo distribution altered by the
light-flavor correction function. These shifts in the
distributions of bNN for these samples are propa-
gated through to the predictions of the shapes of
the corresponding discriminant output histograms.

• Mistag Model: To cover uncertainty in modeling
the shape of the analysis discriminant output his-
tograms for mistagged events, the untagged data,
weighted by the mistag matrix weights, are used to
make an alternate shape template for the mistags.
The untagged data largely consist of W+light fla-
vored jets, but there is a contamination from Wbb̄,
Wcc̄, tt̄, and even single top quark signal events,
making the estimate of the systematic uncertainty
conservative.

• Factorization and Renormalization Scale:
Because alpgen performs fixed-order calculations
to create W+jets diagrams, it requires factoriza-
tion and renormalization scales as inputs. Both of
these scales are set for each event in our alpgen

samples to

√

M2
W +

∑

partons

m2
T, (18)

where m2
T = m2 + p2

T/c2 is the transverse mass of
the generated parton. For light partons, u, d, s, g,
the mass m is approximately zero; mb is set to
4.7 GeV/c2 and mc is set to 1.5 GeV/c2. The
sum is over all final-state partons excluding the W
boson decay products. In addition, alpgen eval-
uates αs separately at each gqq and ggg vertex,
and the scale at which this is done is set to the
transverse momentum of the vertex. The three
scales are halved and doubled together in order
to produce templates that cover the scale uncer-
tainty. Although alpgen’s W+heavy-flavor cross
section predictions are strongly dependent on the
input scales, we do not assign additional rate uncer-
tainties on the W+heavy flavor yields because we
do not use alpgen to predict rates; the yields are
calibrated using the data. We do not consider the

calibrations of these yields to constrain the values
of the scales for purposes of estimating the shape
uncertainty; we prefer to take the customary vari-
ation described above.

• Non-W Flavor Composition: The distribution
of bNN is used to fit the flavor fractions in the low-
/ET control samples in order to estimate the central
predictions of the flavor composition of b-tagged
jets in non-W events, as described in Section VI.
The limited statistical precision of these fits and
the necessity of extrapolating to the higher- /ET sig-
nal region motivates an uncertainty on the flavor
composition. The central predictions for the flavor
composition are 45% b jets, 40% c jets, and 15%
light-flavored jets. The “worst-case” variation of
the flavor composition is 60% b jets, 30% c jets,
and 10% light-flavor jets, which we use to set our
uncertainty. The predictions of the yields are un-
changed by this uncertainty, but the distribution of
bNN is varied in a correlated way for each analysis,
and propagated to the predictions of the discrimi-
nant output histograms.

• Jet η Distribution: Checks of the untagged W+2
jet control region show that the rate of appear-
ance of jets at high |η| in the data is underesti-
mated by the prediction (Fig. 34 (a)). Inaccurate
modeling of the distribution of this variable has a
potentially significant impact on the analysis be-
cause of use of the sensitive variable Q×η, which is
highly discriminating for events with jets at large
|η|. Three explanations for the discrepancies be-
tween data and MC are possible—beam halo over-
lapping with real W+jets events, miscalibration of
the jet energy scale in the forward calorimeters, and
alpgen mismodeling. We cannot distinguish be-
tween these possibilities with the data, and thus
choose to reweight all Monte Carlo samples by a
weighting factor based on the ratio of the data and
Monte Carlo in the untagged sideband, to make al-
ternate shape templates for the discriminants for
all Monte Carlo samples. No corresponding rate
uncertainty is applied.

• Jet ∆R Distribution: Similarly, the distribu-
tion of ∆R(j1, j2) =

√

(∆η)2 + (∆φ)2, a measure
of the angular separation between two jets, is found
to be mismodeled in the untagged control sample
(Fig. 34 (b)). Modeling this distribution correctly
is important because of the use of the input variable
Mjj , which is highly correlated with ∆R(j1, j2) in
our discriminants. The mismodeling of ∆R(j1, j2)
is believed to be due to the gluon splitting fraction
in alpgen, but since this conclusion is not fully
supported, we take as a systematic uncertainty the
difference in predictions of all Monte Carlo based
templates after reweighting them using the ratio of
the untagged data to the prediction.



48

(a)

η2nd Jet 
-2 0 2

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

-2 0 2
0

1000

2000

3000

-2 0 2
0

1000

2000

3000

-2 0 2
0

1000

2000

3000

-2 0 2
0

1000

2000

3000

-2 0 2
0

1000

2000

3000

η2nd Jet 
-2 0 2

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

η2nd Jet 
-2 0 2

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

-2 0 2
0

1000

2000

3000
W + 2 Jets, 0 b Tags

N
o

rm
al

iz
ed

 t
o

 D
at

a

(b)

 R(j1,j2)∆
1 2 3 4 5

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000

 R(j1,j2)∆
1 2 3 4 5

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

4000

 R(j1,j2)∆
1 2 3 4 5

C
an

d
id

at
e 

E
ve

n
ts

0

1000

2000

3000

4000

1 2 3 4 5
0

1000

2000

3000

4000 CDF Data

Single Top

tt

W+HF

W+LF

Other

W + 2 Jets, 0 b Tags

N
o

rm
al

iz
ed

 t
o

 D
at

a

FIG. 34: Graphs showing the poor modeling of the second jet pseudorapidity and the distance between the two jets in the η-φ
plane. These are accounted for with systematic uncertainties on the shapes of the W+jets predictions. The data are indicated
by points with error bars, and the predictions are shown stacked, with the stacking order following that of the legend.

TABLE IV: Sources of systematic uncertainty considered in this analysis. Some uncertainties are listed as ranges, as the
impacts of the uncertain parameters depend on the numbers of jets and b tags, and which signal or background component is
predicted. Sources listed below the double line are used only in calculation of the p-value.

Source of Uncertainty Rate Shape Processes affected

Jet energy scale 0–16% X all

Initial state radiation 0–11% X single top, tt̄

Final state radiation 0–15% X single top, tt̄

Parton distribution functions 2–3% X single top, tt̄

Acceptance and efficiency scale factors 0–9% single top, tt̄, diboson, Z+jets

Luminosity 6% single top, tt̄, diboson, Z+jets

Jet flavor separator X all

Mistag model X W+light

Non-W model X Non-W

Factorization and renormalization scale X Wbb̄

Jet η distribution X all

Jet ∆R distribution X all

Non-W normalization 40% Non-W

Wbb̄ and Wcc̄ normalization 30% Wbb̄, Wcc̄

Wc normalization 30% Wc

Mistag normalization 17–29% W+light

tt̄ normalization 12% tt̄

Monte Carlo generator 1–5% single top

Single top normalization 12% single top

Top mass 2–12% single top, tt̄

IX. INTERPRETATION

The analyses presented in this paper have two goals: to
evaluate the significance of the excess of events compared
with the background prediction, and to make a precise

measurement of the cross section. These goals have much
in common: better separation of signal events from back-
ground events and the reduction of uncertainties help im-
prove both the cross section measurements and the ex-
pected significance if a signal is truly present. But there
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are also differences. For example, the systematic uncer-
tainty on the signal acceptance affects the precision of
the cross section measurement, but it has almost no ef-
fect on the observed significance level, and only a minor
effect on the predicted significance level. More impor-
tantly, a precision cross section measurement relies most
on increasing acceptance and understanding the back-
ground in a larger sample. The significance of an excess,
however, can be much larger if one bin in an analysis
has a very low expected background yield and has data
in it that are incompatible with that background, even
though that bin may not contribute much information to
the cross section measurement.

The contents of the low signal-to-background bins are
important for the proper interpretation of the high signal-
to-background bins. They serve as signal-depleted con-
trol samples which can be used to help constrain the
background predictions. Not all bins are fully depleted
in signal, and the signal-to-background ratio varies from
very small to about 2:1 in some analyses. Simultane-
ous use of all bins’ contents, comparing the observations
to the predictions, is needed to optimally measure the
cross section and to compute the significance. System-
atic uncertainties on the predicted rates and shapes of
each component of the background and the two signals
(s-channel and t-channel), and also bin-by-bin systematic
uncertainties, affect the extrapolation of the background
fits to the signal regions.

These considerations are addressed below, and the pro-
cedures for measuring the cross section and the signifi-
cance of the excess are performed separately. The han-
dling of the systematic uncertainties is Bayesian, in that
priors are assigned for the values of the uncertain nui-
sance parameters, the impacts of the nuisance parame-
ters on the predictions are evaluated, and integrals are
performed as described below over the values of the nui-
sance parameters.

A. Likelihood Function

The likelihood function we use in the extraction of the
cross section and in the determination of the significance
is the product of Poisson probabilities for each bin in
each histogram of the discriminant output variable of
each channel. Here, the channels are the non-overlapping
data samples defined by the number of jets, the number
of b tags, and whether the charegd lepton candidate is a
triggered electron or muon, or whether it was an extended
muon coverage candidate event. We do not simply add
the distributions of the discriminants in these very dif-
ferent samples because doing so would collect bins with
a higher signal purity with those of lower signal purity,
diluting our sensitivity. The Poisson probabilities are
functions of the number of observed data events in each
bin di and the predictions in each bin µi, where i ranges

from 1 to nbins. The likelihood function is given by

L =

nbins
∏

i=1

µdi

i e−µi

di!
. (19)

The prediction in each bin is a sum over signal and back-
ground contributions:

µi =

nbkg
∑

k=1

bik +

nsig
∑

k=1

sik (20)

where bik is the background prediction in bin i for back-
ground source k; nbkg is the total number of background
contributions. The signal is the sum of the s-channel and
t-channel contributions; nsig = 2 is the number of signal
sources, and the sik are their predicted yields in each
bin. The predictions bik and sik depend on nnuis uncer-
tain nuisance parameters θm, where m = 1...nnuis, one
for each independent source of systematic uncertainty.
These nuisance parameters are given Gaussian priors cen-
tered on zero with unit width, and their impacts on the
signal and background predictions are described in the
steps below.

In the discussion below, the procedure for applying sys-
tematic shifts to the signal and background predictions
is given step by step, for each kind of systematic uncer-
tainty. Shape uncertainties are applied first, then bin-
by-bin uncertainties, and finally rate uncertainties. The
bin-by-bin uncertainties arise from limited Monte Carlo
(or data from a control sample) statistics and are taken
to be independent of each other and all other sources of
systematic uncertainty. The steps are labeled b0 for the
central, unvaried background prediction in each bin, and
b4 for the prediction with all systematic uncertainties ap-
plied.

The contribution to a bin’s prediction from a given
source of shape uncertainty is modified by linearly in-
terpolating and extrapolating the difference between the
central prediction b0

ik and the prediction in a histogram
corresponding to a +1σ variation κm+

b,ik if θm > 0, and
performing a similar operation using a −1σ varied his-
togram if θm < 0:

b1
ik = b0

ik +

nnuis
∑

m=1

{

(κm+
b,ik − b0

ik)θm : θm ≥ 0

(b0
ik − κm−

b,ik)θm : θm < 0
. (21)

The parameter list is shared between the signal and back-
ground predictions because some sources of systematic
uncertainty affect both in a correlated way. The appli-
cation of shape uncertainties is not allowed to produce
a negative prediction in any bin for any source of back-
ground or signal:

b2
ik = max(0, b1

ik). (22)

Each template histogram, including the systematically
varied histograms, has a statistical uncertainty in each
bin. These bin-by-bin uncertainties are linearly interpo-
lated in each bin in the same way as the predicted values.
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This procedure works well when the shape-variation tem-
plates share all or most of the same events, but it overes-
timates the bin-by-bin uncertainties when the alternate
shape templates are filled with independent samples. If
the bin-by-bin uncertainty on b0

ik is δ0
b,ik, and the bin-by-

bin uncertainty on bm±
ik is δm±

b,ik , then

δ1
b,ik = δ0

b,ik +

nnuis
∑

m=1

{

(δm+
b,ik − δ0

b,ik)θm : θm ≥ 0

(δ0
b,ik − δm−

b,ik )θm : θm < 0
.

(23)
Each bin of each background has a nuisance parameter
ηb,ik associated with it.

b3
ik = b2

ik + δ1
b,ikηb,ik, (24)

where ηb,ik is drawn from a Gaussian centered on zero
with unit width when integrating over it. If b3

ik < 0, then
ηb,ik is re-drawn from that Gaussian.

Finally, rate uncertainties are applied multiplicatively.
If the fractional uncertainty on b0

ik due to nuisance pa-
rameter m is ρm+

b,ik for a +1σ variation and it is ρm−
b,ik

for a negative variation, then a quadratic function is de-
termined to make a smooth application of the nuisance
parameter to the predicted value:

bik = b4
ik = b3

ik

nnuis
∏

m=1

(

1 +
ρm+

b,ik + ρm−
b,ik

2
θ2

m +
ρm+

b,ik − ρm−
b,ik

2
θm

)

. (25)

The rate uncertainties are applied multiplicatively be-
cause most of them affect the rates by scale factors, such
as the luminosity and acceptance uncertainties, and they
are applied last because they affect the distorted shapes
in the same way as the undistorted shapes. Multiple
shape uncertainties are treated additively because most
of them correspond to events migrating from one bin to
another.

The signal predictions are based on their Standard
Model rates. These are scaled to test other values of
the single top quark production cross sections:

sik = s4
ikβk (26)

where βs scales the s-channel signal and βt scales the
t-channel signal, and the “4” superscript indicates that
the same chain of application of nuisance parameters is
applied to the signal prediction as is applied to the back-
ground.

The likelihood is a function of the observed data
D = {di}, the signal scale factors β = {βs, βt}, the nui-
sance parameters θ = {θm} and η = {ηs,ik, ηb,ik}, the
central values of the signal and background predictions
s = {s0

ik} and b = {b0
ik}, and the rate, shape, and bin-

by-bin uncertainties ρ = {ρm±
b,ik , ρm±

s,ik}, κ = {κm±
b,ik , κm±

s,ik},
δ = {δ0

b,ik, δm±
b,ik , δ0

s,ik, δm±
s,ik}:

L = L(D|β, θ, η, s, b, ρ, κ, δ). (27)

B. Cross Section Measurement

Because the signal template shapes and the tt̄ back-
ground template rates and shapes are functions of mt,
we quote the single top quark cross section assuming a
top quark mass of mt = 175 GeV/c2 and also evaluate
∂σs+t/∂mt. We therefore do not include the uncertainty
on the top quark mass when measuring the cross section.

1. Measurement of σs+t

We measure the total cross section of single top quark
production σs+t, assuming the SM ratio between s-
channel and t-channel production: βs = βt ≡ β. We use
a Bayesian marginalization technique [98] to incorporate
the effects of systematic uncertainty.

L′(β) =

∫

L(D|β, θ, η, s, b, ρ, κ, δ)π(θ)π(η)dθdη, (28)

where the π functions are the Bayesian priors assigned to
each nuisance parameter. The priors are unit Gaussian

functions centered on zero which are truncated when-
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ever the value of a nuisance parameter would result in a
non-physical prediction. The measured cross section cor-
responds to the maximum of L′, which occurs at βmax:

σmeas
s+t = σSM

s+tβ
max. (29)

The uncertainty corresponds to the shortest interval
[βlow, βhigh] containing 68% of the integral of the pos-
terior, assuming a uniform positive prior in β π(β) = 1:

0.68 =

∫ βhigh

βlow
L′(β)π(β)dβ

∫∞

0
L′(β)π(β)dβ

. (30)

This prescription has the property that the numerical
value of the posterior on the low end of the interval is
equal to that on the high end of the interval.

Following the example of other top quark properties
analyses, the single top quark cross section is measured
assuming a top quark mass of 175 GeV/c2. This mea-
surement is repeated with separate Monte Carlo sam-
ples and background estimates generated with masses of
170 GeV/c2 and 180 GeV/c2, and the result is used to
find dσs+t/dmt.

2. Extraction of Bounds on |Vtb|

The parameter

β =
σmeas

s+t

σSM
s+t

(31)

is identified in the Standard Model as |Vtb|2, under the
assumption that |Vtd|2 + |Vts|2 � |Vtb|2, and that new
physics contributions affect only |Vtb|. The theoretical
uncertainty on σSM

s+t must be introduced for this calcula-
tion. The 95% confidence lower limit on |Vtb| is calculated
by requiring 0 ≤ |Vtb| ≤ 1 and finding the point at which
95% of the likelihood curve lies to the right of the point.
This calculation uses a prior which is flat in |Vtb|2.

C. Check for Bias

As a cross-check of the cross-section measurement
method, simulated pseudoexperiments were generated,
randomly fluctuating the systematically uncertain nui-
sance parameters, propagating their impacts on the pre-
dictions of each signal and background source in each bin
of each histogram, and drawing random Poisson pseudo-
data in those bins from the fluctuated means. Samples
of pseudoexperiments were generated assuming different
signal cross sections, and the cross section posterior was
formed for each one in the same way as it is for the data.
We take the value of the cross section that maximizes
the posterior as the best fit value, and calculate the total
uncertainty on it in the same way as for the data. The
resulting pull distribution is a unit Gaussian, provided

FIG. 35: Check of the bias of the cross-section measurement
method using pseudoexperiments, for the super discriminant
combination described in Section X. The points indicate the
median fit cross section, and the bands show the 68% and
95% quantiles of the distribution of the fitted cross section, as
functions of the input cross section. A line is drawn showing
equal input and fitted cross sections; it is not a fit to the
points.

that the input cross section for the pseudoexperiments is
sufficiently far away from zero.

Because the prior for the cross section does not allow
negative values, the procedure described here cannot pro-
duce a negative cross section measurement. For an input
cross section of zero, half of the pseudoexperiments will
have measured cross sections that are exactly zero, and
the other half form a distribution of positive cross sec-
tions. We therefore compare the median measured cross
section with the input cross section of the pseudoexper-
iments because the average measured cross section is bi-
ased. Distributions of 68% and 95% of extracted cross
sections centered on the median are shown as a function
of the input cross section in Fig. 35, demonstrating that
the measurement technique does not introduce bias for
any value of the cross section used as input to the pseu-
doexperiments. These checks were performed for each
analysis; Figure 35 shows the results for the super dis-
criminant combination, which is described in Section X.
Some nuisance parameters have asymmetric priors, and
the inclusion of their corresponding systematic uncertain-
ties will shift the fitted cross section. This is not a bias
which must be corrected but rather it is a consequence
of our belief that the values of the uncertain parameters
are not centered on their central values.
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D. Significance Calculation

The other goal of the search is to establish observa-
tion of single top quark production. The significance is
summarized by a p-value, the probability of observing an
outcome of an experiment at least as signal-like as the
one observed, assuming that a signal is absent. We fol-

low the convention that a p-value less than 1.35 × 10−3

constitutes evidence for a signal, and that a p-value less
than 2.87 × 10−7 constitutes a discovery. These are the
one-sided integrals of the tails of a unit Gaussian distri-
bution beyond +3σ and +5σ, respectively.

We rank experimental outcomes on a one-dimensional
scale using the likelihood ratio [89]

− 2 ln Q = −2 ln
L(D|β, θ̂SM, η̂SM, s = sSM, b, ρ, κ, δ)

L(D|β, θ̂0, η̂0, s = 0, b, ρ, κ, δ)
, (32)

where θ̂SM and η̂SM are the best-fit values of the nuisance
parameters which maximize L given the data D, assum-
ing the single top quark signal is present at its SM rate,
and θ̂0 and η̂0 are the best-fit values of the nuisance pa-
rameters which maximize L assuming that no single top
quark signal is present. These fits are employed not to
incorporate systematic uncertainties, but to optimize the
sensitivity. Fits to other nuisance parameters do not ap-
preciably improve the sensitivity of the search and are
not performed. Therefore, only the most important nui-
sance parameters are fit for: the heavy-flavor fraction in
W+jets events and the mistag rate.

The desired p-value is then

p = p(−2 lnQ ≤ −2 lnQobs|s = 0), (33)

since signal-like outcomes have smaller values of −2 lnQ
than background-like outcomes. Systematic uncertain-
ties are included not in the definition of −2 lnQ, which
is a known function of the observed data and is not
uncertain, but rather in the expected distributions of
−2 lnQ assuming s = 0 or s = sSM, since our expec-
tation is what is uncertain. These uncertainties are in-
cluded in a Bayesian fashion by averaging the distribu-
tions of −2 lnQ over variations of the nuisance parame-
ters, weighted by their priors. In practice, this is done
by filling histograms of −2 lnQ with the results of sim-
ulated pseudoexperiments, each one of which is drawn
from predicted distributions after varying the nuisance
parameters according to their prior distributions. The fit
to the main nuisance parameters insulates −2 lnQ from
the fluctuations in the values of the nuisance parameters
and optimizes our sensitivity in the presence of uncer-
tainty.

The measured cross section and the p-value depend on
the observed data. We gauge the performance of our
techniques not based on the single random outcome ob-
served in the data but rather by the sensitivity – the
distribution of outcomes expected if a signal is present.
The sensitivity of the cross section measurement is given
by the median expected total uncertainty on the cross
section, and the sensitivity of the significance calcula-
tion is given by the median expected significance. The

distributions from which these sensitivities are computed
are Monte Carlo pseudoexperiments with all nuisance pa-
rameters fluctuated according to their priors. Optimiza-
tions of the analyses were based on the median expected
p-values, without reference to the observed data. Indeed,
the data events passing the event selection requirements
were hidden during the analysis optimization.

In the computation of the observed and expected p-
values, we include all sources of systematic uncertainty
in the pseudoexperiments, including the theoretical un-
certainty in the signal cross sections and the top quark
mass. Because the observed p-value is the probability of
an upward fluctuation of the background prediction to
the observed data, with the outcomes ordered as signal-
like based on −2 lnQ, the observed p-value depends only
weakly on the predicted signal model, and in particular,
almost not at all on the predicted signal rate. Hence
the inclusion of the signal rate systematic uncertainty
in the observed p-value has practically no impact, and
the shape uncertainties in the signal model also have lit-
tle impact (the background shape uncertainties are quite
important though). On the other hand, the expected p-
value and the cross section measurement depend on the
signal model and its uncertainties.

X. COMBINATION

The four analyses presented in Section VII each seek
to establish the existence of single top quark production
and to measure the production cross section, each using
the same set of selected events. Furthermore, the same
models of the signal and background expectations are
shared by all four analyses. We therefore expect the re-
sults to have a high degree of statistical and systematic
correlation. Nonetheless, the techniques used to separate
the signal from the background are different and are not
guaranteed to be fully optimal for observation or cross
section measurement purposes; the figures of merit op-
timized in the construction of each of the discriminants
are not directly related to either of our goals, but instead
are synthetic functions designed to be easy to use during
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the training, such as the Gini function [93] used by the
BDT analysis, and a sum of classification errors squared
used by the neural network analysis.

The discriminants all perform well in separating the
expected signal from the expected background, and in
fact their values are highly correlated, event to event,
as is expected, since they key on much of the same in-
put information, but in different ways. The coefficients
of linear correlation between the four discriminants vary
between 0.55 and 0.8, depending on the pair of discrim-
inants chosen and the data or Monte Carlo sample used
to evaluate the correlation. Since any invertible func-
tion of a discriminant variable has the same separating
power as the variable itself, and since the coefficients of
linear correlation between pairs of variables change if the
variables are transformed, these coefficients are not par-
ticularly useful except to verify that indeed the results
are highly, but possibly not fully, correlated.

As a more relevant indication of how correlated the
analyses are, pseudoexperiments are performed with fully
simulated Monte Carlo events analyzed by each of the
analyses, and the correlations between the best-fit cross
section values are computed. The coefficients of linear
correlation of the output fit results are given in Table V.

TABLE V: Correlation coefficients between pairs of cross sec-
tion measurements evaluated on Monte Carlo pseudoexperi-
ments.

LF ME NN BDT

LF 1.0 0.646 0.672 0.635

ME — 1.0 0.718 0.694

NN — — 1.0 0.850

BDT — — — 1.0

The four discriminants, LF, ME, NN, BDT make use
of different observable quantities as inputs. In particu-
lar, the LF, NN, and BDT discriminants use variables
that make assignments of observable particles to hypo-
thetical partons from single top quark production, while
the ME method integrates over possible interpretations.
Furthermore, since the correlations between pairs of the
four discriminants are different for the different physics
processes, we expect this information also to be useful
in separating the signal from the background processes.
In order to extract a cross section and a significance, we
need to interpret each event once, and not four times, in
order for Poisson statistics to apply. We therefore choose
to combine the analyses by forming a super discriminant,
which is a scalar function of the four input discriminants,
and which can be evaluated for each event in the data
and each event in the simulation samples. The functional
form we choose is a neural network, similar to that used
in the 2.2 fb−1 single top quark combination at CDF [26]
as well as the recent H → WW search at CDF [99]. The
distributions of the super discriminant are used to com-
pute a cross section and a significance in the same way

as is done for the component analyses.

In order to train, evaluate, and make predictions which
can be compared with the observations for the super dis-
criminant, a common set of events must be analyzed in
the ME, NN, LF, and BDT frameworks. The discrimi-
nant values are collected from the separate analysis teams
for each data event and for each event simulated in Monte
Carlo. Missing events or extra events in one or more
analyses are investigated and are restored or omitted as
discrepancies are found and understood. The W+jets
predictions in particular involve weighting Monte Carlo
events by mistag probabilities and by generator lumi-
nosity weights, and these event weights are also unified
across four analysis teams. The procedure of making a
super discriminant combination provides a strong level
of cross checks between analysis teams. It has identified
many kinds of simple mistakes and has required us to
correct them before proceeding.

We further take the opportunity during the combina-
tion procedure to optimize our final discriminant for the
goal that we set, that is, to maximize the probability
of observing single top quark production. A typical ap-
proach to neural network training uses a gradient descent
method, such as back-propagation, to minimize the clas-
sification error, defined by

∑

(oi − ti)
2, where oi is the

output of the neural network and ti is the desired out-
put, usually zero for background and one for signal. Al-
though back-propagation is a powerful and fast technique
for training neural networks, it is not necessarily true
that minimizing the classification error will provide the
greatest sensitivity in a search. The best choice is to
use the median expected p-value for discovery of single
top quark production as the figure of merit to optimize,
but it cannot be computed quickly. Once a candidate
network is proposed, the Monte Carlo samples must be
run through it, the distributions made, and many mil-
lions of pseudoexperiments run in order to evaluate its
discovery potential. Even if a more lightweight figure
of merit can be computed from the predicted distribu-
tions of the signals and background processes, the step
of reading through all of the Monte Carlo samples lim-
its the number of candidate neural networks that can be
practically considered.

We therefore use the novel neural network training
method of Neuro-Evolution, which uses genetic algo-
rithms instead of back-propagation, to optimize our net-
works. This technique allows us to compute an arbitrary
figure of merit for a particular network configuration
which depends on all of the training events and not just
one at a time. The software package we use here is Neuro-
Evolution of Augmenting Topologies (neat) [100]. neat

has the ability to optimize both the inter-node weights
and the network topology, adding and rearranging nodes
as needed to improve the performance.

We train the neat networks using half of the events
in each Monte Carlo sample, reserving the other half for
use in predicting the outcomes in an unbiased way, and to
check for overtraining. All background processes are in-
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cluded in the training except non-W because the non-W
sample suffers from extremely low statistics. The output
values are stored in histograms which are used for the
figure of merit calculation. We use two figures of merit
which are closely related to the median expected p-value,
but which can be calculated much more quickly:

“o-value” This figure of merit (so named because it is
closely related to the expected p-value) is obtained
from an ensemble of pseudoexperiments by taking
the difference in the median of the test statistic
−2 lnQ for the background-only and signal plus
background hypotheses, divided by the quadrature
sum of the widths of those distributions:

o =
−2 lnQmed

B + 2 lnQmed
S+B

√

(∆2 ln QB)2 + (∆2 ln QS+B)2
. (34)

Figure 39(c) shows the distributions of −2 lnQ sep-
arately for S+B and B-only pseudoexperiments for
the final network chosen. Typically, 2500 pseudo-
experiments give a precision of roughly 1-2% and
require one to two minutes to calculate. This is still
too slow to be used directly in the evolution, but it
is used at the end to select the best network from a
sample of high-performing networks identified dur-
ing the evolution. This figure of merit includes all
rate and shape systematic uncertainties.

Analytic Figure of Merit As a faster alternative to
the figure of merit defined above, we calculate the
quadrature sum of expected signal divided by the
square root of the expected background (s/

√
b) in

each bin of each histogram. To account for the ef-
fects of finite Monte Carlo statistics, this figure of
merit is calculated repeatedly, each time letting the
value of the expected signal and background pro-
cesses fluctuate according to a Gaussian distribu-
tion with a width corresponding to the Monte Carlo
statistical error on each bin. The median of these
trials is quoted as the figure of merit. This figure of
merit does not include rate and shape systematic
uncertainties.

The network training procedure also incorporates an
optimization of the binning of the histograms of the net-
work output. In general, the sensitivity is increased by
separating events into bins of different purity; combining
the contents of bins of different purity degrades our abil-
ity to test for the existence of the signal and to measure
the cross section. Competing against our desire for fine
gradations of purity is our need to have solid predictions
of the signal and background yields in each bin with re-
liable uncertainties – binning the output histogram too
finely can result in an overestimate of the sensitivity due
to downward fluctuations in the Monte Carlo background
predictions. Care is taken here, as described below, to
allow the automatic binning optimization to maximize
our sensitivity without overestimating it.

The procedure, applied to each channel separately, is
to first use a fixed binning of 100 bins in the neural net-
work output from zero to one. The network output may
not necessarily fill all 100 bins; different choices of net-
work parameters, which are optimized by the training,
will fill different subsets of these bins. To avoid prob-
lems with Monte Carlo statistics at the extreme ends of
the distributions, bins at the high end of the histogram
are grouped together, and similarly at the low end, sac-
rificing a bit of separation of signal from background for
more robust predictions. At each step, the horizontal
axis is relabeled so that the histogram is defined be-
tween zero (lowest signal purity) and one (highest pu-
rity). The bins are grouped first so that there are no
bins with a total background prediction of zero. Next,
we require that the histograms have a monotonically de-
creasing purity as the output variable decreases from one
towards zero. If a bin shows an anomalously high pu-
rity, its contents are collected with those of all bins with
higher network outputs to form a new end bin. Finally,
we require that on the high-purity side of the histogram,
the background prediction does not drop off too quickly.

We expect ln
∫ 1

x
B ∝ ln

∫ 1

x
S for all x in the highest pu-

rity region of the histogram. If the background decreases
at a faster rate, we group the bins on the high end to-
gether until this condition is met. After this procedure,
we achieve a signal-to-background ratio exceeding 5:1 in
the highest-discriminant output bins in the two-jet, one
b-tag sample.

The resulting templates and distributions are shown
for all four selected data samples in Fig. 36. Each distri-
bution is more sensitive than any single analysis.

XI. ONE-DIMENSIONAL FIT RESULTS

We use the methods described in Section IX to extract
the single top cross section, the significance of the excess
over the background prediction, and the sensitivity, de-
fined to be the median expected significance, separately
for each component analysis described in Section VII,
and for the super discriminant combined analysis (SD),
which is described in Section X. The results are listed in
Table VI. The cross section measurements of the indi-
vidual analyses are quite similar, which is not surprising
due to the overlap in the selected data samples. The mea-
surements are only partially correlated, though, as shown
in Table V, indicating that the separate analyses extract
highly correlated but not entirely identical information
from each event.

Because the super discriminant has access to the most
information on each event, and because it is optimized
for the expected sensitivity, it is the most powerful single
analysis. It is followed by the Neural Network (NN) and
Boosted Decision Tree (BDT) analyses, and the Matrix
Element (ME) analysis. The Likelihood Function (LF)
analysis result in the table is shown only for the t-channel
optimized likelihood functions, although the s-channel
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FIG. 36: Normalized templates (left) and plots comparing the predicted distributions with data (right) of the final combined
neural network output for each selected data sample. These distributions are more sensitive than any single analysis. The data
are indicated by points with error bars, and the predictions are shown stacked, with the stacking order following that of the
legend.
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signals were included in the templates.

A separate result, a measurement just of the s-channel
signal cross section, is extracted from just the two-jet,
two-b-tag LF analysis, assuming the t-channel signal
cross section is at its SM value. The result thus ob-
tained is σLF

s = 1.5+0.9
−0.8 pb, with an observed significance

of 2.0 σ and an expected significance of 1.1 σ.

The super discriminant analysis, like the component
analyses, fits separately the distributions of events in
eight non-overlapping categories, defined by whether the
events have two or three jets passing the selection re-
quirements, one or two b-tags, and whether the charged
lepton was a triggered e or µ candidate (TLC), as op-
posed to a non-triggered extended muon coverage lepton
candidate (EMC). A separate cross section fit is done for
each of these categories, and the results are shown in Ta-
ble VII. The dominant components of the uncertainties
are statistical, driven by the small data sample sizes in
the most pure bins of our discriminant distributions. The
cross sections extracted for each final state are consistent
with each other within their uncertainties.

The results described above are obtained from the
`+ /ET+jets selection. An entirely separate analysis con-
ducted by CDF is the search for single top quark events in
the /ET plus two jets sample [28] (MJ), which uses a data
sample corresponding to 2.1 fb−1 of data. The events
selected by the MJ analysis do not overlap with those
described in this paper because the MJ analysis imposes
a charged lepton veto and an isolated high-pT track veto.
The MJ analysis separates its candidate events into three
subsamples based on the b-tagging requirements [28], and
the results are summarized in Table VII.

The distributions of the super discriminant in the
` + /ET+jets sample and the MJ neural network dis-
criminant in the /ET+jets sample are shown in Fig. 37,
summed over the event categories, even though the cross
section fits are performed and the significances are cal-
culated separating the categories. The sums over event
categories add the contents of bins of histograms with
different s/b together and thus do not show the full sep-
aration power of the analyses. Another way to show the
combined data set is to collect bins with similar s/b in
all of the channels of the SD and MJ discriminant his-
tograms and graph the resulting distribution as a func-
tion of log10(s/b), which is shown in Fig. 38(a). This
distribution isolates, at the high s/b side, the events that
contribute the most to the cross section measurement
and the significance. Figure 38(b) shows the integral of
this distribution, separately for the background predic-
tion, the signal plus background prediction, and the data.
The distributions are integrated from the highest s/b side
downwards, accumulating events and predictions in the
highest s/b bins. The data points are updated on the plot
as bins with data entries in them are added to the inte-
gral, and thus are highly correlated from point to point.
A clear excess of data is seen over the background pre-
diction, not only in the most pure bins, but also as the
s/b cut is loosened, and the excess is consistent with the

standard model single top prediction.

Because the ` + /ET+jets sample and the /ET+jets
sample have no overlapping events, they can be com-
bined as separate channels using the same likelihood
technique described in Section IX. Fitting the distri-
butions of all eleven independent categories simultane-
ously, we obtain a single top quark cross section mea-
surement of σs+t = 2.3+0.6

−0.5 pb, assuming a top quark

mass of 175 GeV/c2. The dependence of the mea-
sured cross section on the assumed top quark mass is
∂σs+t/∂mt = +0.02 pb/(GeV/c2). Table VII shows the
results of fitting for σs and σt in the separate jet, b-tag,
and lepton categories. The dominant source of uncer-
tainty is the statistical component from the data sample
size. Our best-fit single top quark cross section is ap-
proximately one standard deviation below the Standard
Model prediction of [9, 10]. The prediction of [11] is
somewhat higher, but it is also consistent with our mea-
surement.

To extract |Vtb| from the combined measurement, we
take advantage of the fact that the production cross sec-
tion σs+t is directly proportional to |Vtb|2. We use the
relation

|Vtb|2measured = σmeasured
s+t |Vtb|2SM/σSM

s+t, (35)

where |Vtb|2SM ≈ 1 and σSM
s+t = 2.86 ± 0.36 [9, 10]. Equa-

tion 35 further assumes that |Vtb|2 � |Vts|2 + |Vtd|2, be-
cause we are assuming that the top quark decays to Wb
100% of the time, and because we assume that the pro-
duction cross section scales with |Vtb|2, while the other
CKM matrix elements may contribute as well if they
were not very small. We drop the “measured” sub-
scripts and superscripts elsewhere. We obtain |Vtb| =
0.91 ± 0.11(stat.+syst.)±0.07(theory) and a 95% confi-
dence level lower limit of |Vtb| > 0.71.

We compute the p-value for the significance of this re-
sult as described in Section IX D. We obtain a p-value
of 3.1× 10−7 which corresponds to a 4.985 standard de-
viation excess of data above the background prediction.
We quote this to two significant digits as a 5.0 standard
deviation excess. The median expected p-value is in ex-
cess of 5.9 standard deviations; the precision of this es-
timate is limited by the number of pseudoexperiments
which were fit. The fact that the observed significance
is approximately one sigma below its SM expectation is
not surprising given that our cross section measurement
is also approximately one sigma below its expectation,
although this relation is not strictly guaranteed.

Recently, the cross section measurement shown here
has been combined with that measured by D0 [24]. The
same technique for extracting the cross section in combi-
nation as for each individual measurement is used [101],
and the best-fit cross section is σs+t = 2.76+0.58

−0.47 pb, as-

suming mt = 170 GeV/c2.
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TABLE VI: A summary of the analyses covered in this paper, with their measured cross sections, observed significances, and
sensitivities, defined to be their median expected p-values, converted into Gaussian standard deviations. The analyses are
combined into a super discriminant (SD), which is combined with the orthogonal /ET+jets sample (MJ) to make the final CDF
combination.

Analysis Cross Section Significance Sensitivity

[pb] [σ] [σ]

LF 1.6+0.8
−0.7 2.4 4.0

ME 2.5+0.7
−0.6 4.3 4.9

NN 1.8+0.6
−0.6 3.5 5.2

BDT 2.1+0.7
−0.6 3.5 5.2

SD 2.1+0.6
−0.5 4.8 > 5.9

MJ 4.9+2.5
−2.2 2.1 1.4

SD + MJ Combination 2.3+0.6
−0.5 5.0 > 5.9
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FIG. 37: Comparison of the predicted distributions with data of all channels of the super discriminant (left) and the MJ dis-
criminant (right). Points with error bars indicate the observed data, while the stacked, shaded histograms show the predictions,
including a standard model single top signal. In each panel, the order of the stacked components follows that of the legend.

XII. TWO-DIMENSIONAL FIT RESULTS

The extraction of the combined signal cross sec-
tion σs+t proceeds by constructing a one-dimensional
Bayesian posterior with a uniform prior in the cross sec-
tion to be measured. An extension of this is to form
the posterior in the two-dimensional plane, σs vs. σt,
and to extract the s-channel and the t-channel cross sec-
tions separately. We assume a uniform prior in the σs

vs. σt plane, and integrate over the nuisance parame-
ters in the same way as we did for the one-dimensional
cross section extraction. The input histograms for this
extraction are the distributions of the super discriminant
for the W+jets analyses, and the MJ discriminant his-
tograms are also included, exactly as is done for the one-
dimensional cross section fit.

The best-fit cross section is the one for which the pos-
terior is maximized, and corresponds to σs = 1.8+0.7

−0.5 pb

and σt = 0.8+0.4
−0.4 pb. The uncertainties on the mea-

surements of σs and σt are correlated with each other
because s-channel and t-channel signals both populate
the signal-like bins of each of our discriminant variables.
Regions of 68.3%, 95.5%, and 99.7% credibility are de-
rived from the distribution of the posterior by evalu-
ating the smallest region in area that contains 68.3%,
95.5% or 99.7% of the integral of the posterior. Each re-
gion has the property that the numerical values of the
posterior along the boundary of the region are equal
to each other. The best-fit values, the credibility re-
gions, and the SM predictions of σs and σt are shown in
Fig. 40. We compare these with the NLO SM predictions
of σt = 1.98±0.25 pb and σs = 0.88±0.11 pb [9, 10], and
also with the NNNLO predictions of σt = 2.16± 0.12 pb
and σs = 0.98± 0.04 pb [11].

The coverage of the technique is checked by gen-
erating 1500 pseudo-datasets randomly drawn from
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(a) (b)

FIG. 38: Distributions of data and predictions for the SD and MJ analyses, where bins of similar s/b have been collected
together (left). The points with error bars indicate the observed data, while the stacked, shaded histograms show the predictions,
including a standard model single top signal. These distributions are integrated starting on the high-s/b side, and the resulting
cumulative event counts are shown on the right, separately for the observed data, for the background-only prediction, and the
signal-plus-background prediction.

TABLE VII: A summary of the measured values of the single
top production cross section σs +σt using the super discrimi-
nant analysis, separately for each of the non-overlapping final
state categories, based on the number of jets, the number of
b tags, and the lepton category. Also listed are the MJ cross
section fit results by b-tagging category.

Category Cross Section [pb]

SD 2-Jet, 1-Tag, TLC 1.7+0.7
−0.6

SD 2-Jet, 2-Tag, TLC 4.1+2.3
−1.9

SD 3-Jet, 1-Tag, TLC 2.4+2.1
−1.7

SD 3-Jet, 2-Tag, TLC 6.3+4.9
−4.2

SD 2-Jet, 1-Tag, EMC 2.3+1.4
−1.1

SD 2-Jet, 2-Tag, EMC 9.8+5.7
−4.4

SD 3-Jet, 1-Tag, EMC 7.2+5.5
−4.6

SD 3-Jet, 2-Tag, EMC 0.0+8.8
−0.0

SD 2.1+0.6
−0.5

MJ 2-Tag 5.9+4.2
−3.7

MJ 1-Tag +jetprob 2.7+4.6
−2.7

MJ 1-Tag 4.3+2.6
−2.3

MJ 4.9+2.5
−2.2

SD + MJ Combination 2.3+0.6
−0.5

systematically-varied predictions assuming that a single
top signal is present as predicted by the SM, and per-
forming the two-dimensional extraction of σs and σt for
each one in the same way as is done for the data. No
bias is seen in the median fit σs and σt values. Each
pseudo-dataset has a corresponding set of regions at

68.3%, 95.5%, and 99.7% credibility. The fractions of the
pseudo-datasets’ fit bands that contain the input predic-
tion for σs and σt is consistent with the credibility levels
at which the bands are quoted.

The two-dimensional fit result is not in good agree-
ment with the SM prediction; the difference is at ap-
proximately the two standard deviation level of signifi-
cance. The differences between the measured values of
the s- and t-channel cross sections and their SM predic-
tions are driven by the deficit of events observed in the
high-discriminant output regions of the two-jet, one-b-tag
channels relative to the SM signal-plus background pre-
diction as shown in Fig. 36 (b), and the excess of events
observed in the two-jet, two-b-tag distributions, as shown
in Fig. 36 (d). The measured total cross sections in these
jet and b-tagging categories, listed in Table VII, show
the effects of these discrepancies with respect to the SM
predictions.

The newer calculation of the t-channel kinematic dis-
tributions [54] predicts a larger fraction of t-channel sig-
nal events with a visible recoiling b jet, which is normally
not reconstructed because it is beyond the forward accep-
tance of the detector or because the jet ET is too small.
This calculation has almost the same overall cross sec-
tion prediction for σt as the one we use elsewhere in this
paper [9], but it reduces the two-jet, one b-tag prediction
for the t-channel signal and raises the two-jet two-b-tag
and 3-jet predictions. After fully simulating and recon-
structing the signal events, the effects on the predicted
yields are small; the 3-jet channels’ contribution to our
measurement sensitivity is also small. The change to the
1D and 2D fit results is not noticeable when using the
model of [54] compared to our central prediction within
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(a) (b)

(c)

FIG. 39: The posterior curve of the cross section measurement calculated with the super discriminant histograms as inputs
(a), the posterior curve for the |Vtb| calculation (b), and the distributions of −2 lnQ in simulated S + B and B-only pseudoex-
periments, assuming a Standard Model single top quark signal (c). The value of −2 lnQ observed in the data is indicated with
an arrow.

the rounding precision of the results we quote.

The t-channel process is sensitive to the b quark PDF
of the proton, while the s-channel process is not. The
low measured value of σt reported here is not in good
agreement with the SM predictions. The D0 collabora-
tion has recently measured σt = 3.14+0.94

−0.80 pb using a

data sample corresponding to 2.3 fb−1 of integrated lu-
minosity [102], which is larger than the standard model
prediction. Taken together, there is insufficient evidence
to exclude a standard model explanation of the results.

XIII. SUMMARY

The observation of single top quark production poses
many difficult experimental challenges. CDF performs
this analysis in proton-antiproton collisions at 1.96 TeV
in events with a leptonically decaying W boson and jets.
The low signal-to-background ratio in the data samples
passing our selection requirements necessitates precise
modeling of the signal and background kinematic dis-
tributions with matrix-element-based Monte Carlo gen-
erators using full parton showering and detailed detector
simulation, and also requires the normalization of the
dominant background rates to measured rates in side-
band data samples. The small signals and large, un-
certain background processes also require us to take the
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FIG. 40: The results of the two-dimensional fit for σs and
σt. The black point shows the best fit value, and the 68.3%,
95.5%, and 99.7% credibility regions are shown as shaded ar-
eas. The SM predictions are also indicated with their the-
oretical uncertainties. The SM predictions shown are those
of [9, 10] (NLO) and [11] (NNNLO).

maximum advantage of the expected kinematic and fla-
vor differences between the signals and the background
processes. We develop novel, powerful techniques for
combining information from several observable quanti-
ties computed for each event. We purify a subsample of
single top quark events with a predicted signal to back-
ground ratio exceeding 5:1 from a sample starting with
a signal to background ratio of 1:16 after b-tagging.

Our final discriminant variables are functions of many
kinematic and b-tagging variables. Incorrect modeling of
one or more variables, or even of the correlations between
variables, can bias the results. We therefore evaluate an
exhaustive list of systematic uncertainties which affect
the predicted signal and background components’ rates
and kinematic distributions, including both theoretical
uncertainties and uncertainties which arise from discrep-
ancies observed between the data and the simulations in
control regions. The correlations between the systematic
uncertainties on the rate and shape predictions of the
signal and background processes in several data samples
are taken into account in all of the results and in com-
puting the expected sensitivities presented in this paper.
We also consider Monte Carlo statistical uncertainties in
each bin of each template histogram in each channel in-
dependently. We constrain the major background rates
in situ in the selected event samples to further reduce the
uncertainties in their values and to improve the sensitiv-

ity of our results.

Our analyses were optimized based on predictions and
were blinded to the data during their development. The
analyses were cross-checked using the data in control
samples before looking at the data in the signal regions.
We perform many checks of our methods – we compare
the observed and predicted distributions of the discrim-
inant input and output variables in independent control
samples, and we also train discriminants that enrich sam-
ples of each background as if it were signal. The vast
majority of our cross checks show that the predictions
model the data very well, and those that show discrep-
ancies contribute to our systematic uncertainties.

The four analyses in the `+ /ET+jets sample described
in this paper are combined with a statistically indepen-
dent analysis in the /ET+jets sample [28] to maximize
the total sensitivity. We report an observation of elec-
troweak single top quark production with a p-value of
3.1 × 10−7, which corresponds to a significance of 5.0
standard deviations. The measured value of the com-
bined s- and t-channel cross section is σs+t = 2.3+0.6

−0.5 pb

assuming the top quark mass is 175 GeV/c2, and also
assuming the SM value of σs/σt. The dependence of the
measured cross section on the assumed top quark mass
is ∂σs+t/∂mt = +0.02 pb c2/GeV. We extract a value of
|Vtb| = 0.91 ± 0.11(stat.+syst.)±0.07(theory) and a 95%
confidence level lower limit of |Vtb| > 0.71, using the pre-
diction of [9, 10] for the SM cross section, and also assum-
ing that |Vtb|2 � |Vts|2 + |Vtd|2. With a two-dimensional
fit for σs and σt, using the same combination of analyses
as the one-dimensional fit, we obtain σs = 1.8+0.7

−0.5 pb and

σt = 0.8+0.4
−0.4 pb.
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